Is Venus the two-faced cat really a chimera?

Genetics explained, with added kittens.

Venus the cat has been in the news. She has heterochromia – that is, her two eyes are different colours – as well as a perfectly placed black splodge (technical term), which makes her look like Popular Batman Villain Two-Face.

Why is she like that? One possibility is that she is a chimera. This term, taken from the mythical monster with the heads of a goat, lion and snake, refers to a real – albeit relatively rare – condition where two genetically distinct embryos merge in the womb.

A chimera is essentially the reverse of identical twins. In the latter, one fertilised egg splits completely and forms two separate embryos; in the former, two fertilised eggs merge together and grow into one child.

The cells which come from each of the fertilised eggs maintain their own character – so if one egg had genes for black hair and the other for white, the resulting chimera would have mottled black and white fur:

A chimeric rat with her babies. Photograph: Wikimedia commons

The thing is, Venus may not actually be a chimera.: her perfectly split face may just be a fluke placement of an otherwise normal tortoiseshell pattern. National Geographic's Katia Andreassi writes:

Female cats, said Leslie Lyons, a professor at the University of California, Davis, already have two X chromosomes so they can sport that coat without the extra X. That means Venus is not necessarily a chimera.

To find out would require genetic testing, said Lyons. With samples of skin from each side of the cat, "we can do a DNA fingerprint—just like on CSI—and the DNA from one side of the body should be different than the other."

But there is still a mystery about Venus - her single blue eye. Andreassi adds:

Cat eyes are typically green or yellow, not blue. A blue-eyed cat is typically a Siamese or else a cat with "a lot of white on them," she explained.

Venus appears to have only a white patch on her chest, which to Lyons is not enough to explain the blue eye.

Science: making cool cats cooler.

Venus the "chimera" cat.

Alex Hern is a technology reporter for the Guardian. He was formerly staff writer at the New Statesman. You should follow Alex on Twitter.

GERRY BRAKUS
Show Hide image

“Like a giant metal baby”: whether you like it or not, robots are already part of our world

For centuries, we have built replacements for ourselves. But are we ready to understand the implications?

There were no fireworks to dazzle the crowd lining the streets of Alexandria to celebrate Cleopatra’s triumphant return to the city in 47BC. Rather, there was a four-and-a-half-metre-tall robotic effigy of the queen, which squirted milk from mechanical bosoms on to the heads of onlookers. Cleopatra, so the figure was meant to symbolise, was a mother to her people.

It turns out that robots go back a long way. At the “Robots” exhibition now on at the Science Museum in London, a clockwork monk from 1560 walks across a table while raising a rosary and crucifix, its lips murmuring in devotion. It is just one of more than 100 exhibits, drawn from humankind’s half-millennium-long obsession with creating mechanical tools to serve us.

“We defined a robot as a machine which looks lifelike, or behaves in lifelike ways,” Ben Russell, the lead curator of the exhibition, told me. This definition extends beyond the mechanisms of the body to include those of the mind. This accounts for the inclusion of robots such as “Cog”, a mash-up of screws, motors and scrap metal that is, the accompanying blurb assures visitors, able to learn about the world by poking at colourful toys, “like a giant metal baby”.

The exhibits show that there has long existed in our species a deep desire to rebuild ourselves from scratch. That impulse to understand and replicate the systems of the body can be seen in some of the earliest surviving examples of robotics. In the 16th century, the Catholic Church commissioned some of the first anthropomorphic mechanical machines, suggesting that the human body had clockwork-like properties. Models of Jesus bled and automatons of Satan roared.

Robots have never been mere anatomical models, however. In the modern era, they are typically employed to work on the so-called 4D tasks: those that are dull, dumb, dirty, or dangerous. A few, such as Elektro, a robot built in Ohio in the late 1930s, which could smoke a cigarette and blow up balloons, were showmen. Elektro toured the US in 1950 and had a cameo in an adult movie, playing a mechanical fortune-teller picking lottery numbers and racehorses.

Nevertheless, the idea of work is fundamental to the term “robot”. Karel Čapek’s 1920s science-fiction play RUR, credited with introducing the word to the English language, depicts a cyborg labour force that rebels against its human masters. The Czech word robota means “forced labour”. It is derived from rab, which means “slave”.

This exhibition has proved timely. A few weeks before it opened in February, a European Parliament commission demanded that a set of regulations be drawn up to govern the use and creation of robots. In early January, Reid Hoffman and Pierre Omidyar, the founders of LinkedIn and eBay respectively, contributed $10m each to a fund intended to prevent the development of artificial intelligence applications that could harm society. Human activity is increasingly facilitated, monitored and analysed by AI and robotics.

Developments in AI and cybernetics are converging on the creation of robots that are free from direct human oversight and whose impact on human well-being has been, until now, the stuff of science fiction. Engineers have outpaced philosophers and lawmakers, who are still grappling with the implications as autonomous cars roll on to our roads.

“Is the world truly ready for a vehicle that can drive itself?” asked a recent television advert for a semi-autonomous Mercedes car (the film was pulled soon afterwards). For Mercedes, our answer to the question didn’t matter much. “Ready or not, the future is here,” the ad concluded.

There have been calls to halt or reverse advances in robot and AI development. Stephen Hawking has warned that advanced AI “could spell the end of the human race”. The entrepreneur Elon Musk agreed, stating that AI presents the greatest existential threat to mankind. The German philosopher Thomas Metzinger has argued that the prospect of increasing suffering in the world through this new technology is so morally awful that we should cease to build artificially intelligent robots immediately.

Others counter that it is impossible to talk sensibly about robots and AI. After all, we have never properly settled on the definitions. Is an inkjet printer a robot? Does Apple’s Siri have AI? Today’s tech miracle is tomorrow’s routine tool. It can be difficult to know whether to take up a hermit-like existence in a wifi-less cave, or to hire a Japanese robo-nurse to swaddle our ageing parents.

As well as the fear of what these machines might do to us if their circuits gain sentience, there is the pressing worry of, as Russell puts it, “what we’re going to do with all these people”. Autonomous vehicles, say, could wipe out the driving jobs that have historically been the preserve of workers displaced from elsewhere.

“How do we plan ahead and put in place the necessary political, economic and social infrastructure so that robots’ potentially negative effects on society are mitigated?” Russell asks. “It all needs to be thrashed out before it becomes too pressing.”

Such questions loom but, in looking to the past, this exhibition shows how robots have acted as society’s mirrors, reflecting how our hopes, dreams and fears have changed over the centuries. Beyond that, we can perceive our ever-present desires to ease labour’s burden, to understand what makes us human and, perhaps, to achieve a form of divinity by becoming our own creators. 

This article first appeared in the 23 March 2017 issue of the New Statesman, Trump's permanent revolution