Show Hide image

The dead zone: why intensive agriculture is failing us, and ruining the planet

Mark Cocker discovers the shocking damage caused by modern food production in Dead Zone: Where the Wild Things Were by Philip Lymbery

The “dead zone” that supplies the title of this highly informed, utterly compelling book is an area of seabed off the Louisiana coast. Philip Lymbery explains that it is caused by a monthly discharge of roughly 112,000 tonnes of fertiliser that is carried down by river systems draining North America’s vast agricultural zones of genet­ically modified corn and soya. The pollutants deplete almost all of the oxygen in parts of the seabed, so the fish and other marine organisms are either killed or driven out.

The worst of the dead zones is the size of the states of Rhode Island and Connecticut combined, and the collapse of the ecosystem, though temporary, is inflicting great damage on American fisheries. It is also replicated in 40 such areas around the US. Worldwide, there are now 400 of them and they are doubling in number every decade.

According to Lymbery, the root cause of the problem is our increasingly globalised system of intensive agriculture. The “Green Revolution”, which has done so much to meet the needs of humanity’s spiralling population – from three billion in the 1960s to more than seven billion today – is predicated on an unsustainable exploitation of water, soil and natural ecosystems. But worst of all in this modern regime is the intensive system of meat production.

As you might expect from a man who is the chief executive of the campaign group Compassion in World Farming, Lymbery explores the consequences for animal welfare. Typical is our abuse of humanity’s most precious bird, the barnyard chicken. Most of the 60 billion reared annually are on a life cycle from egg to table of about eight weeks, during which they have as much living space as an A4 page. High numbers of them are infected with bugs such as campylobacter or salmonella, the latter at a rate up to ten times higher than among free-range fowl.

Animal welfare is a significant subplot, but this book’s primary theme is the consequences of such production methods for the rest of life on Earth. Despite the name, intensive agriculture is astonishingly inefficient. Converting grain or soya to meat protein wastes about two-thirds of the total food value of the original harvest. Beef is the worst, with a conversion rate of 3 per cent. It takes an arable area equivalent to the size of the entire EU to produce feed for the world’s livestock and this, if used more wisely, could yield food for another four billion people. In short, we are growing the wrong things in the wrong way for the wrong purpose.

Like all authors trying to convey large ecological truths, Lymbery has to cast his net widely and follow the chain of consequences across continents. In a chapter entitled “Elephant”, for instance, he explores how the margarine, shampoo and pork chops at your local supermarket are implicated in the loss of Sumatra’s rainforest, one of the most biodiverse areas on Earth. All of these household products require palm oil or palm kernel meal, which is used to feed livestock and even farmed fish. The EU imports half of the global harvest of palm meal, and demand for it is expected to treble by 2050. As the palm plantations expand to meet this demand, so we cause the loss of more Indonesian rainforest and drive the Sumatran elephant, just 2,500 of which are now left, to extinction.

Although Lymbery’s narrative threads are subtle and replete with powerful evidence, he is sometimes unable to explain the process by which people can confront, let alone overcome, the alliance of vested political interests and drug and chemical multinationals that is at the heart of this unsustainable regime. To give one small example, UK soils are in a parlous condition because of our five-decade addiction to chemical additives. Some of the richest peatlands in the Fens are being lost at a rate of two centimetres a year. Lymbery describes a ­Cambridgeshire farm that was test-drilled 200 times to assess its worm population. Not a single worm could be found. It sounds comic, but it should horrify us. Since Darwin, we have known of the invaluable role of earthworms in soil health. Yet when the EU put forward a directive on soil conservation, the UK, along with the governments of four other countries and supported by the National Farmers’ Union, campaigned for eight years to kill off the proposal.

Lymbery may not specify the exact political model that will allow us to challenge this madness, but he does a superb job of equipping us with the hard facts. No author can do more.

This article first appeared in the 30 March 2017 issue of the New Statesman, Wanted: an opposition
Show Hide image

The Earth moved: how we discovered ripples in space time

A new book charts the decades-long search to measure gravitational waves.

Monday 14 September 2015 was no ordinary day. At exactly 09:50:45 Universal Time, for one-fifth of a second, the Earth was stretched and squeezed by a tenth of a quintillionth of one per cent. Everything on the planet expanded and contracted as it did by one part in 1021 (1 followed by 21 noughts). It was proof that after a decades-long search, scientists had finally developed instruments sensitive enough to detect gravitational waves – ripples in space-time that were 10,000 times smaller than the nucleus of a hydrogen atom.

That at least begins to take care of when, where and what happened that Monday morning. In this engaging book the Dutch science writer Govert Schilling goes on to deal with the who and why by telling the tale of those involved in making what has been dubbed by some as “the discovery of the century” and the reason those unimaginably tiny ripples in space-time originated in a catastrophic event 1.3 billion years ago in a galaxy far, far away.

The “who” starts with a 36-year-old German physicist who in 1915 had just completed his masterwork, general relativity. In Albert Einstein’s new theory, gravity was due to the warping of space by the presence of mass. The Earth moves around the sun not because some mysterious invisible force pulls it, but because the warping of space tells matter how to move, while matter tells space how to curve. General relativity revealed that the familiar three-dimensions of space and the passage of time are not independent and absolute but are woven together into a four-dimensional fabric called space-time.

Einstein was fallible. Although vibrations in the fabric of space-time are a distinctive consequence of general relativity, Einstein wrote that “there are no gravitational waves”. He soon changed his mind; but the hunt for gravity waves using detectors in the lab would not begin until the late 1950s.

The Laser Interferometer Gravitational-wave Observatory, LIGO, was given the green light in 1990 by the US National Science Foundation, despite a $300 million price tag. By 2015 the project involved two similar detectors housed in facilities some 3,000 kilometres apart – one in Hanford, Washington State, the other in Livingston, Louisiana. A single detector would register microseismic events, such as passing cars; to exclude these false alarms, experimenters would take note only of events that showed up in both detectors within a few milliseconds of each other.

In the LIGO detectors, laser beams are fired along 4km-long L-shaped vacuum pipes and reflected from mirrors at each end. By analysing the light beams, it is possible to detect changes in the distance between the mirrors, which increases and decreases as space expands and contracts due to a passing gravitational wave. But the effect is tiny because gravity is a weak force and space-time is not easy to flex, bend, stretch or compress. A lot of energy is required for the tiniest ripples. Even pairs of stars orbiting each other don’t generate gravitational waves that LIGO can detect; but events involving black holes would.

Black holes, another prediction of general relativity, are the remnants of stars many times more massive than the sun. These stars burn brightly, and in their death throes, signalled by going supernova, their inner part collapses to form a black hole.

GW150914, the first gravitational wave detected by LIGO on 14 September 2015, was produced by the merger of two black holes that were 36 and 29 times as massive as the sun. As those two black holes orbited each other 1.3 billion years ago, they generated minute ripples in space-time that propagated with the speed of light. The waves carried away energy, causing the two holes to spiral ever closer, orbiting each other hundreds of times a second. As space-time was stretched and squeezed, the tiny perturbations grew into massive waves. When the two black holes collided and merged into one, a tsunami of gravitational waves was generated. These cataclysmic collisions happen less than once in a million years in our galaxy, but there are at least 100 billion galaxies in the observable universe.

“When I am judging a theory, I ask myself whether, if I were God, I would have arranged the world in such a way,” Einstein once confessed. Perhaps only he or Newton could get away with such a statement; the rest have to rely on the close relationship between theoretical insight and experimental scrutiny that lies at the heart of the scientific method. Wherever evidence can be coaxed out of nature, it corroborates or refutes a theory and serves as the sole arbiter of validity. Gravity waves are another tick for general relativity and the first direct proof of the existence of black holes; all other evidence has been circumstantial.

The hunt for gravity waves is over, but gravitational wave astronomy may help solve some mysteries that continue to baffle physicists: such as the nature of dark matter and dark energy, which together make up 96 per cent of the universe.

Ripples in Spacetime: Einstein, Gravitational Waves, and the Future of Astronomy
Govert Schilling
Harvard-Belknap, 340pp, £23.95

Manjit Kumar is the author of “Quantum: Einstein, Bohr and the Great Debate About the Nature of Reality” (Icon)

This article first appeared in the 17 August 2017 issue of the New Statesman, Trump goes nuclear