© Ben Jones
Show Hide image

Hacking the brain: can DIY neuroscience make you happier – and smarter?

Using kit purchased on the internet for £60, trend-setters are perking up their brains with low-level blasts of electricity. Lucy Jones tries it out.

The emperor Claudius suffered from the most savage migraines. By 46AD, he was in his late fifties and, presumably at his wits’ end from the pain, he agreed that his esteemed doctor Scribonius Largus could try something new and a little off-the-wall.

Largus, who had his work cut out for him looking after a boss with a long list of health problems and a mercurial temper, paid a local fisherman to catch a couple of electric eels from the Mediterranean Sea. Back at the palace, he held them to the emperor’s temples in an attempt to quell his excruciating headache. It is the first recorded instance of electrical stimulation being used as a medical treatment.

Fast-forward two thousand years or so to a couple of students in their early twenties in a bedroom in Leeds, using electricity in an attempt to make their lives better and easier. A brain stimulation kit bought on the internet includes the wires, electrode sponges, headband and basic device needed to get them started. A nine-volt battery is not included.

Katie, 23, has suffered from anxiety and depression since she was 18. When her boyfriend Lee told her about transcranial direct-current stimulation (tDCS), a form of neurostimulation that involves administering a low level of electrical current to the brain, she was sceptical. But Lee had heard that it could help people with mood disorders and wondered if she might benefit.

“The first time, I freaked out,” she remembers. “I thought, ‘I can’t cope with putting electrical stimulations in my brain.’ Lee put this machine on and, it’s difficult to explain, but everything went empty in a good way. I can’t remember if I’ve ever felt like that. I felt relaxed and chilled inside. It was a mad sensation and an out-of-body experience.”

She’d tried antidepressants in the past but found they didn’t work for her. Now Katie uses the kit regularly. “It’s improved my life and improved my mind,” she says.

Lee uses the tDCS kit for different reasons. He was intrigued by its claims to enhance learning. Motivated by his general interest in self-improvement, he bought the kit from a website for about £60. The first time he used it, he found it easier to revise for his degree. The information “stuck” better, and for longer. He got a First.

I ask if he is concerned that zapping his brain could be dangerous. He is a bit worried – “At the end of the day, you’re frying your brain” – but hasn’t noticed any negative effects so far.

 

***

 

Katie and Lee aren’t alone. Small but growing numbers of people are delivering electric currents to their heads at home with online kits. Some in this DIY brain-zapping community build their own machines from scratch. If you’ve got basic electrical skills and know how to wire a circuit board, a kit is relatively easy to make. Garage neuroscientists do it for various reasons: to speed-learn, pick up languages quickly, treat depression, reduce anxiety, increase attention span, soothe migraines, get smarter, improve confidence and memory and motor skills. The claims made for tDCS are varied and seemingly endless.

Its potential is being explored by medical and scientific professionals seeking to help people suffering from a number of diseases and symptoms, from depression to epilepsy. While scientists aren’t completely sure how it affects behaviour – and there are sceptics – we know that a flow of electrical current affects the way the brain works. The basic science is simple and it works like this: administering direct current to a particular part of the brain makes it more likely that neurons will fire under the anode ­(positive) and less likely they will fire under the cathode (negative).

Roi Cohen Kadosh, a research lecturer at the department of experimental ­psychology at Oxford University, says: “What we can say about tDCS is that it does change how our brain works. It changes the level of excitability of different brain regions.”

tDCS has been used for over 100 years but was overshadowed for much of the 20th century by electroconvulsive therapy and drug treatments. It became popular again in 2000 with the increased use of new brain-imaging techniques, such as fMRI, and other brain stimulation methods such as transcranial magnetic stimulation. Clinical trials and studies of the effects, ­veracity, safety and future of tDCS continue to mushroom. This year, it looks like kits might become readily available for the first time.

When I first heard about tDCS, it conjured up stereotypical images of shock treatment from Sylvia Plath’s novel The Bell Jar and the film of One Flew Over the Cuckoo’s Nest (which the Royal College of Psychiatrists said did for electroconvulsive therapy what Jaws did for sharks). But as I read more about it, I learned that the current normally used is extremely low (1 to 2 milliamps, compared with typically 800 milliamps in electroconvulsive therapy). It sounded, within a controlled environment, safe. Maybe I should try it.

One day I went to University College London’s Institute of Cognitive Neuroscience to act as a guinea pig for a doctoral student, Camilla Nord. She is running a trial on the effects of tDCS when used together with cognitive behavioural therapy – a talking treatment – to treat depression. I climbed the stairs feeling excited. My mood changers these days are limited to coffee and sugar. Would I get a buzz off electricity?

To improve the accuracy of her result, Nord is using a “double-blind” experiment, in which half her volunteers receive sham tDCS. No one, including Nord, knows whether it is a placebo or not.

According to Nord, “tDCS is this ­amazing tool and a way that neuroscience can help psychiatry”. She is hoping to find that it augments the effect of cognitive behavioural therapy, making both treatments more successful than they are in isolation. She is confident that by directing an electrical current at the neurons in the dysfunctioning area of the brain that causes depression, she can make that area more active.

I sign a form and confirm that I don’t have a history of seizures. Nord takes down my hair and puts a headband on my head. She positions two sponges dipped in saline solution on the front of my skull where the frontal cortex sits under my cranium. A towel around my neck mops up the water dripping down.

She presses the button. “I don’t feel anything.” Zap. “Should I feel something now?” Zap. She explains that there might be some tingling of the skin and continues to administer the current to my cranium. Zap, zap, zap. I feel tingling but it could just be the cold water on my scalp.

Then I’m given a brain-training “N-back” test on a PC in the corner. It’s quite hard and the room is hot. I’m not very good at it, and feel flustered. I expected heightened senses or a sharpening of my brain.

Aren’t I supposed to feel smarter?

“Saying tDCS makes you smarter is an unhelpful myth; but that doesn’t mean that tiny, specific tDCS might not make you better at tiny, specific things,” Nord explains.

We talk about recent studies that have cast doubt on the efficacy of tDCS but Nord remains optimistic that neuroscience can help people with depression and other psychiatric conditions. She is worried about people using the kits at home, however. “tDCS should be more readily available if that means people can buy safe machines. Because of the publicity about it, you get people fabricating their own machines at home with seriously unusual side effects.”

I leave feeling relaxed and a bit spaced out, but that might be tiredness from a few hours spent talking about complex science. I had the electrical current for only about five minutes. Perhaps when I try tDCS with the DIY community in east London they might be a little more cavalier with their dosages and times. But now I’m feeling a little more cautious after Nord’s warnings; I don’t really want skull burn.

 

***

 

The next morning I talk on Skype to Xavier, a French man who took part in Camilla Nord’s trial. Last summer, while working in the City as a banker, he began feeling depressed. He went to a GP who prescribed him pills. They didn’t work. The doctor offered cognitive behavioural therapy but there was a six-month wait. Desperate, he took up the offer to be part of the UCL experiment that offered cognitive behavioural therapy alongside tDCS.

“My friends thought it sounded a bit crazy, but I thought, ‘I need to find a solution,’” Xavier says.

Although he doesn’t know whether the tDCS he received was real, Xavier believes it was, because he felt burning on his scalp. He’s much better now and looks happy and healthy. I ask if he’d use electricity again. “In a controlled environment,” he says. “The brain is the greatest asset we all have, so you have to be careful.”

It is people like Xavier who Marom Bikson, professor of biomedical engineering at the City College of New York, hopes will benefit from tDCS as it becomes mainstream. Bikson is a leading voice in the field. He says: “I think, I hope, that tDCS has a huge potential to remove human suffering and that’s why I’m very anxious for it to be made available.”

As well as depression, he mentions fibromyalgia, neural pain and status epilepticus as serious health problems that might be treated with electricity. Depression is the area where he has seen the most encouraging results. “That’s why I’m not comfortable waiting 15 years for us to work out all the scientific questions. There are people suffering today who could benefit from this technology. Their lives are shattered by their diseases and it’s so unfortunate that something that might – big ‘might’ – be able to help them, and is considered so safe that we’ll use it on college students, is not available.”

But he is confident this is going to change very soon. “What is needed is clinical-grade tDCS, which should be made available for people to use at home. That path needs to open up and I think it will later this year.”

In April, I attend the Magstim Neuro­science Conference 2015 at Oxford University. (Magstim is a company specialising in transcranial magnetic stimulation devices, so tDCS is on the agenda.) I meet Nick Davis, a lecturer in psychology at Swansea University, who is studying the effects of tDCS on motor control. I ask him how we can use brain stimulation to improve performance in sport.

Davis gives tennis as an example, and the length of time tennis players spend getting their serve right. Imagine if they could use tDCS to reduce this. “It could free up their time to do other things and make them better players,” he says.

Of course that raises a question of ethics. Would we count that as cheating? Would we put it in the same category as using steroids? And what of the difference between sport and artistic performance?

“Say I give you cocaine and you run faster in a sprint; we would consider that cheating,” he says. “But if I give you cocaine and you write a better song, we don’t think that’s cheating – we just think that’s being in a band. We don’t care that an album was made on drugs. In sport, we care about the effort people put in so anything that improves your effort is cheating.”

The comparison between cocaine and electricity leads me to wonder how addictive tDCS could be. Most of us resort to drugs when we want to change our mood, whether it’s caffeine, a glass of wine or something stronger. I am conscious that my interest in tDCS is triggering a kind of appetite for or excitement about a potential new way of hushing my racing head and balancing my mood. But Davis doesn’t think that ­electricity could be addictive: “In the same way as performing a ritual can become not addictive but part of your behaviour, there is that potential. Is it addictive in the same way as nicotine and alcohol? I don’t think so.” Bikson agrees, describing the doses being used currently as “baby aspirin” level.

Bikson’s talk at the Oxford conference, “Are We Ready To Go Home?”, is about taking tDCS into people’s houses safely. He argues that it is deployable, simple and safe, that there is considerable patient demand for it, and that we need to stop people resorting to home-made kits, as even low-intensity stimulation can cause harm when applied with bad technology.

The numbers Bikson quotes are persuasive: 40,000 tDCS sessions have taken place over the past 15 years, with no serious adverse effects documented in nearly 1,000 studies published.

He suggests some ways to regulate over-the-counter devices: single-use electrodes, single-position headgear, or one dose stored on a single physical module. A code that ­unlocks the device could act like a safety lid on a bottle of Calpol.

Finally, Bikson advocates making tDCS freely available in the interests of science. As Davis says, “No one wants to stop people innovating: it’s how things happen. But you’ve got to think about people’s safety.”

For people who want to try tDCS, such as the musician St Vincent, who tweeted in December that all she wanted for Christmas was a tDCS machine, how close is this to reality? “That ship has sailed. It’s just a case of accelerating it,” says Bikson. “People have to get used to the idea of using electricity instead of pills.”

The Thync System, which went on the market in June, might be the first big step. It doesn’t make medical claims: it’s a cognitive enhancement tool (costing $299) that promises “to deliver pulsed neurostimulation waveforms to modulate psychophysiological arousal for lifestyle or wellness applications”. The manufacturers are quite cagey with information but say the devices “use neuro-signalling to induce shifts in ­energy and calm states within minutes”. Bikson is a product adviser and a fan, though he struggles to find the words to describe Thync’s effects: “It’s not how coffee or wine makes us feel, it’s the way electricity makes us feel.”

Although tDCS is already being used in a couple of private hospitals in the United States it won’t be available on ­prescription from your GP yet. NICE, the UK health regulator, is developing guidance on its use for depression; two pivotal multi-centre trials for treating depression with tDCS are also under way.

The two recurring themes in my conversations with scientists are optimism about tDCS as a tool for treatment, on the one hand, and concern about people experimenting at home on the other. Davis is wary of the activity of DIY enthusiasts. “It’s dangerous,” he says, “but they tend to know it’s dangerous.” Contributors to the busy DIY tDCS forum on Reddit, a bulletin-board-type website, discuss recent studies and share personal experiences and tips about which “montages” – how the electrodes are positioned – to use. That way, you can stimulate the specific parts of the brain governing anything from numerical reasoning and improved socialisation to migraine pain and the reduction of cravings. It is mainly a practical forum for individual users. “Best electrode to avoid skin burn?” is a typical query.

 

***

 

I visit a hackspace in east London to meet Andrew Vladimirov, a Russian neuroscientist who runs a computer security business. He’s a member of Brain Hackers, a group of neuroscientists, electronics engineers and hobbyists. It is a step up from the Reddit DIYers; this group strives to enhance the field of neurostimulation and make it available to others.

There’s an old arcade game in one corner and a tuck shop selling penny sweets and Space Raiders crisps, next to an area filled with brewing apparatus. Experts and amateurs interested in hacking, gaming, science, technology and innovation mill around surrounded by sewing machines, 3D-printed octopuses and other animals, Rubik’s Cubes, lab coats, old computers, new computers and a laser cutting machine. Outside, guys fly drones next to a caravan for “Robotics”. The bookshelves read like poetry: Practical Ruby Projects, Drupal, The Definitive Guide to Grails, The Klingon Dictionary, In Code.

Soon after Vladimirov arrives it becomes clear that he views tDCS as boring and is more interested in other ways of altering the brain, such as magnetic fields, lasers, ultrasound and alternating current. He seeks to measure brain activity simultaneously through electroencephalographic (EEG) devices, including the readily available, consumer-friendly Muse and MindWave, as well as more hackish, DIY headgear.

There is talk of nootropics (smart drugs). Vladimirov wears a locket-type container around his neck containing a couple of doses of piracetam for emergencies. Like many others in London’s DIY neurostimulation community, he is a transhumanist: one who strives to enhance human life with science, health research, technology and innovation.

I ask Vladimirov if I can try something and he applies a combination of transcranial, pulsed magnetic-field and laser stimulation at alpha-band frequency to the back of my head for ten minutes. He is using a machine produced by a friend in Ukraine (where this device is apparently used to treat depression and anxiety). Afterwards, my vision seems slightly sharper and I have a bit more energy; but I am paranoid I’ve damaged my brain.

We talk about safety and Vladimirov allows that it would be possible to get into a state you didn’t want to be in – say, highly alert, or very mellow – and not be able to get out. I don’t think I’ll be rushing to buy a kit on the internet. Later, I have strange dreams. I feel nauseous for the rest of the evening and the next day, though this could be from something I ate.

I catch up on the tDCS Reddit and find a plea from a bipolar patient desperate to find a montage to help him study psychology: “I read a post here, of a guy who used tDCS day before exam, couldn’t study earlier because his grandpa passed away or something. Anyway. He aced on the tests. Tried finding it to know what montage he used. Can’t find it,” he says, asking for a “partner in this journey”.

Various users offer advice, and then there’s a breakthrough. “Hey, that’s me!” says the guy whose grandfather’s illness caused him to miss classes. It turns out he’s J D Leadam, the 25-year-old chief executive of Neurolectrics and creator of the Brain Stimulator – the machine used by, among others, Lee and Katie in Leeds. He gives details of the montage he uses and links out to his own Brain Stimulator site.

In a way, Leadam the young entrepreneur, Bikson the eminent scientist and Vladimirov the hackspace pioneer are all coming from the same place: if we can improve the brain, why shouldn’t we?

This article is published simultaneously in the “Brain” season of The Long + Short, Nesta’s free online magazine of ideas and innovation. thelongandshort.org

This article first appeared in the 26 June 2015 issue of the New Statesman, Bush v Clinton 2

Charlie Forgham-Bailey for the New Statesman
Show Hide image

“I teach dirty tricks”: the explosives expert who shows armies how to deal with terrorists

Sidney Alford used to blow things up in his garage. Now his expertise is helping save lives.

“I’ll fetch the hammer,” says Sidney Alford, leaving me in a laboratory filled with mysteriously named drawers and small bottles with skulls on their labels. When he has fetched it – “it’s a jeweller’s hammer, given to me in Paris by a friend of Salvador Dali” – the 82-year-old plans to tap gently on a small mound of white powder called triacetone triperoxide, or TATP, better known as the explosive favoured by Isis in their suicide belts and homemade bombs. Because of its instability and destructive power, its nickname is “Mother of Satan”.

Tapping it with a hammer is enough to make it go bang.

Directing me to stand by the door, he searches for ear plugs before stuffing some paper in his ears – “I’m quite deaf, you know,” were almost his first words to me that morning – and begins to tap the Mother of Satan. On the fourth tap, it explodes in a genteel fashion with a flash and a pop. Its sensitivity to percussion is one of the reasons that jihadi bomb-makers suffer so many workplace accidents. “See,” Alford says. “You’d be OK walking, just don’t fall over or get shot.”

I have wanted to meet Sidney Alford ever since I heard about him from the investigative journalist Meirion Jones, who once uncovered a British man who sold £50m-worth of fake bomb detectors in Iraq and other countries. (The fraudster, James McCormick, was jailed for ten years in 2013.)

Giving a presentation to students, Jones mentioned that he could prove the gadgets were useless – just black boxes with radio aerials sticking out of them – because he had taken them “to a guy the BBC uses for explosives, who has a quarry in Somerset where he blows things up”. I decided then and there that I was very interested in being in a quarry in Somerset where someone blew things up. Maybe I would even get to press the button.

There was a less childish reason for visiting, too. Sidney Alford’s life story is interwoven with one of the technologies that defines the modern world: explosives. We fear explosives – suicide bombs, car bombs, bombs on aircraft – but we also need them, for everything from realistic film scenes to demolition. (Alford has a letter from Stanley Kubrick thanking him for his help on Full Metal Jacket.) Surprisingly, the best way to defuse an explosive is often with another explosive, something that Sidney’s company, Alford Technologies, has pioneered.

In other words, if you want to make something go bang – or, just as importantly, stop something going bang – he is the man to talk to. Quite loudly.

***

The first explosive materials Alford ever saw were fragments of bombs and V2 rockets left over from the German shelling of London. Born in 1935 in the suburb of Ilford, he moved with his family to Bournemouth when the Second World War broke out. When he returned, he found rich pickings in his battered neighbourhood in the form of magnesium incendiary bombs, which he filed down and turned into fireworks.

I ask him if, like my own father, he ever frightened his teachers with nitrogen triiodide, an unstable explosive compound that schoolchildren used to make themselves and set off in lessons to terrify unwary members of staff in the era before health and safety. “Oh yes,” he says. “I put it under my French teacher’s chair.” A pause. “He’d been in the army, so he didn’t make a fuss.”

Alford went to a grammar school, where he was an undistinguished pupil, angry that the headmaster wouldn’t let him learn German (rather than Latin) so he could speak to the Jewish child refugees he knew. But he was always interested in chemistry, and “by the fifth form, I’d recruit classmates to make bigger bangs”.

A chemistry degree came next, followed by a series of odd jobs, including diet research and studying the brain, an MSc in the science of environmental pollution, and two business associations with men he now characterises as “bad sorts”, who ripped him off.

By this time, he had moved to Ham, in west London, and had begun to take his chemistry experiments more seriously. It was the early 1970s, and the IRA’s bombing campaign had come to England. How could these weapons be neutralised, Alford wondered? Was it better to encase suspect packages in “blast containers”, or use shaped charges – typically, small cones that focus explosive energy into a point – to disrupt their ability to go off?

A brief digression on explosives is necessary here. When you think of something going bang in a spectacular fashion, that’s a detonation. “Detonare,” says Alford at one point during my tour of the quarry, relishing the Latin. “Like thunder.”

High explosives such as TNT, nitroglycerin or Semtex can be detonated by administering a violent shock to the main charge using a small amount of relatively sensitive and violent material in a metal capsule. This creates a hot shock wave, which sweeps through the substance faster than the speed of sound.

Old-fashioned gunpowder, house fires and your car’s internal combustion engine go through a different process, known as “deflagration”, where the chemical reaction moves through the molecules much more slowly. This burning is usually less dramatic and easier to manage. (Alford hates the term “controlled explosion”, reasoning that an expert should always control their explosions. If they fail, it’s a cock-up.)

The theory goes, then, that if you attack a munition just hard enough to ignite its contents but without causing a violent shock wave, it will deflagrate but, on a good day, it will not detonate. “Yes, it might make a massive fireball, but I’ve done it in jungles under a tree,” says Alford. “[With deflagration] the tree may lose most of its leaves, but with detonation, there is no tree.”

In the 1970s, he set up a makeshift laboratory in his suburban garage. There, he would experiment with making explosive charges, using measured quantities of material in different casings. He would leave his car engine running so any bangs could be plausibly written off as backfiring.

This cover story clearly didn’t wash with the neighbours, though, as first the police and then MI5 – “the most gentlemanly man” – came round to see why exactly a chemistry graduate they had never heard of was blowing stuff up in his suburban garage. When he explained himself to the security services, they put him in touch with the Ministry of Defence, and he was offered a contract.

***

Alford Technologies has a slogan: “For when you can’t afford to fail”. It also has an office in a business park outside Trowbridge in Wiltshire, but the real action happens at its testing ground, a former quarry amid the rolling hills of the Mendips, not far outside Bath. It feels like a cross between a scrapyard and a building site. “Here’s the bottom half of a Soviet mine, which we use as a brazier,” says Alford at one point, prodding it with a toecap.

Soldiers from various armies come here to learn about explosives and how to render them harmless. It’s vital work: last year in Iraq and Syria there were dozens of car bombs, with a single one in Baghdad claiming 250 lives. In Manchester this year an Isis-inspired jihadi killed 22 concert-goers and injured 250 with a backpack bomb apparently built from instructions found on the internet.

Learning to counter such threats means understanding them; jihadists and other terrorists might have access only to basic materials, but many also display great ingenuity. When I ask why Alford has a packet of Tampax in his lab, he says the tampons can be dipped in liquid explosives and turned into cartridges: “I teach dirty tricks so they don’t get caught out by them.”

Sidney Alford’s contributions to the world of explosives rest on an unlikely substance: water. When he first began tinkering in his garage in the 1970s, engineers had already worked out a rough-and-ready way of disabling improvised explosive devices (IEDs). They used a gun barrel loaded with a blank cartridge to fire a jet of water that broke through the explosive’s casing and disrupted it. However, a sufficiently strong casing – say, one made of steel – could defeat this method.

In a low outbuilding in the quarry, Alford shows me his answer to this problem. Within a shaped charge, the force of a small explosion collapses a metal cone, turning it inside out and extruding it into a long, thin rod that shoots out at high velocity, about five times faster than a bullet.

The young chemist had an idea: why not combine the water from the older gun-barrel method with the accuracy and force of the metal jet in a shaped charge? In Alford inventions such as the Vulcan and the Pluton, the explosive charge shoots a targeted jet of water at high speed and with incredible accuracy.

Ho ho, you’re thinking. Water! Very scary. This is broadly what I thought until I saw one of Alford’s smaller shaped charges in action. After the demonstration with the hammer, he put on a pair of sturdy boots instead of brogues and we hopped into a small four-by-four to get to the base of the quarry. “Should I take my safety glasses?” I asked, even though we would be inside an old reinforced lookout hut salvaged from the Maze prison in Northern Ireland. “Oh no,” replied Alford. “If it goes wrong, it will kill you. No need to waste a perfectly good pair of glasses.”

The Vulcan is about six-inches long, with a case of grey plastic, and loaded with 30g of plastic explosives with a cone of water held in front of it. The explosive is “about two toasts’ worth of butter,” said Alford’s project manager, Matt Eades, who served in the Royal Engineers for 25 years.

Alford placed the charge above a 10mm-thick steel plate using the aluminium-wire legs as a tripod, inserted an electric detonator into the Vulcan, and we retired to the hut, whose thick, double-glazed windows gave a good, if smeary, view of the sandpit. “If you write a nice, ingratiating article about me you can press the button,” said Alford.

I pressed the button.

There was a significant bang, making me glad of my ear defenders, but the plume went straight upwards. When we ventured out to the sandpit, Alford practically skipped up the side and fished out the metal plate, now with a clean-edged circular hole punched straight through it.

This practical demonstration had followed a whirlwind tour of the various Alford Technologies products and a brisk explanation of the theory of explosives. Alford clearly enjoys naming his creations: the Vulcan sits in his display alongside the Krakatoa and the Vesuvius, which can also be used for bomb disposal and demolition. The BootBanger is so called because “it bangs car boots” while the Van Trepan cuts a neat, round hole in the top of a larger vehicle. The Bottler is not only shaped like a bottle, but named for the Australian slang “that’s a bottler”, which Alford translates as “the cat’s whiskers”.

Even the Dioplex, a linear charge that creates a chopping blade, has a story attached: “I thought it was a do-it-yourself device, but I thought ‘do it oneself’ sounded better. So: ‘Do It Oneself Plastic Explosive’.”

One of the things a trip to the quarry teaches me is that the ways in which humans try to kill and maim each other are nothing if not inventive. The company sells a version of a Bangalore torpedo, an old invention used by Alford’s own father when he fought in the First World War. This is a modular tube you can push underneath barbed wire, blowing it apart to clear a path for infantry. A stronger version was needed, Alford says, because of the advent of razor wire. “Barbed wire was soft steel, designed to keep in cows. Razor wire was designed to cut you.” The new Alford Bangalore Blade torpedoes through the wire coils, severing them using four aluminium cutters and creating an unobstructed 10m route through.

The Breacher’s Boot is a door-shaped panel filled with water, used to punch through walls in hostage situations. “It gives a ‘kick’ to the wall, so bits of it will fall down. You don’t want to use shaped charges then,” he says. “If there’s a person on the other side of the wall, you’d cut them in half. And if you simply used a mass of high explosive, the concrete would fly almost horizontally.”

A similar idea lies behind the Alford Strip, a sticky rope of explosives and tamping material used in terror arrests, where the police would once have used a sledgehammer to open a door, but are now much more worried about booby traps. You run the 25mm- or 42mm-long plastic extrusion down a door, window or wall and then lay a length of det cord far enough away from it to put service personnel at a safer distance.

Down in the quarry, having punched through one square steel plate, we now try ten taped together versus a 40g load of explosives and a copper cone. The result: a 2m-high flash and the same clean hole – although the jet doesn’t make it through all ten plates. It stops at seven.

This isn’t an error: the shaped charges can use copper, water, aluminium or magnesium, depending on the force and space needed. Magnesium is incendiary; water and aluminium might be chosen because they lose velocity very quickly. You cut through what you want to cut through, without damaging either the structural integrity of the object surrounding it or innocent bystanders.

This precision is particularly important in demolition work. Last year, Alford Technologies took over the contract to break up Didcot Power Station, slicing through steel beams to dismantle the decommissioned building. It was called in after a terrible accident on 23 February 2016, when four workers employed by a respected firm, Coleman and Company, were killed while trying to lay charges inside the structure. “There was this crash – I looked over my shoulder and saw the boiler coming down,” one of the survivors, Mathew Mowat, told the Birmingham Mail. “We ran in self-preservation – then there was a loud bang and a massive cloud of dust, we couldn’t see much for a few minutes.”

It took months to recover the bodies of all four missing men, who had to be identified from dental records and tattoos.

***

Over an Eccles cake in the main office, Alford tells me about some of his other jobs, including cutting up sunken ships in the Persian Gulf during the “Tanker War” of the mid-1980s, between Iran and Iraq, and joining a mission to retrieve £40m in gold bars from HMS Edinburgh, which sank in 1942 off the coast of Norway. (It was carrying 4,570kg of Russian bullion destined for the western allies.) The ship had been designated a war grave to stop it being plundered, and an air of mystery hung over the whole salvage project. Alford was told not to mention that he was an explosives expert.

Perhaps unsurprisingly, his work – and his anti-authoritarian streak – has caused conflict. “I’m doing things government departments ought to be doing,” he tells me in the car on the way to the quarry. “I’m in the anomalous position of someone who is quite admired, but also quite despised. Civil servants hate my guts.” When he was 40, he says, he asked for a formal job working with the department of defence, “and was told I was too old to have new ideas”. He set up Alford Technologies in 1985, and it now employs six people. The latest set of accounts at Companies House value the firm’s net worth at £2.3m.

Although Alford is scrupulously careful when handling explosives, he loathes health-and-safety culture. As we tramp round the quarry, he indicates a sign next to a pond, reading “Deep Water”, and tuts theatrically. He voted for Brexit to give the establishment a kick, not thinking it would actually happen.

It is a source of great chagrin that the government breathes down his neck, regulating what compounds he can keep and how he can keep them. “You have to have a licence for every substance,” he tells me in the car. “I’ve got them all. Well, it might be different if I wanted to go nuclear.”

 In 1996, he decided to make a stand against the pettifogging bureaucracy that, as he saw it, interfered with his work. Spooked by the thought of Irish republican terrorism, the regulators had insisted that he had to put a lock on his explosives store. “I told them that if the IRA really wanted to get my explosives, they would kidnap one of my family.” (He has two sons with his Japanese-born wife, Itsuko; the elder, 46-year-old Roland, now runs the business.) Besides which, he didn’t see why he should put an alarm on his few kilos of various explosives when the farmer next door had tonnes of ammonium nitrate fertiliser, a key ingredient in the IRA’s bomb-making.

The stand-off broke when his request to renew his explosives licence was turned down; soon after, the police came to raid his stores. He had tipped off a friendly journalist, however, and the visit was captured on camera and written up first in the local paper and then the Daily Mail, where Christopher Booker took up the cause of a Englishman’s inalienable right to keep high explosives in his shed. “I felt morally obliged to be prosecuted,” he says now.

The court case, documented in the newspaper clippings, sounds like a mixture of deadening legal procedure and high farce. At the magistrates’ court, Alford and a friend pursued and rearrested the next defendant, who tried to do a runner; when his case was kicked upwards to Swindon Crown Court, he turned up in an armoured Daimler Ferret, posing for photographs with his head poking out of the top, white hair tucked into a helmet. He was eventually charged with possessing explosives without a licence and fined £750, with £250 costs. The judge ordered the police to give him his licence back, but ticked him off for using the court system for political purposes.

Listening to this story, it becomes clearer why Alford never ended up in the warm embrace of an official government role. He offered his ideas to the Ministry of Defence, but he shows me a letter from April 1977, where an unlucky official reveals that he is “regarding your correspondence with diminishing enthusiasm”. Still, he is sanguine. “Most of my enemies have now gone to the laboratory in the sky, or retired,” he says. “I’m glad I didn’t work for them. Would I have fitted in? Probably not.” In any case, he has had some official recognition, receiving an OBE in 2015.

***

Alford’s work is used in war zones including Afghanistan, but also places like Cambodia, which are still riddled with unexploded ordnance from previous ground wars. Over the years, he has visited that country and Laos several times to practise new ways of dealing with old bombs. (The company produces a more affordable version of the Vulcan for non-military use.) He first went to Vietnam during the war; the last person, he says, to get a Japanese tourist visa into the country in the 1950s. The company’s brochures show smiling locals posing next to the sleeping monsters they have had to live alongside for decades.

But Iraq, too, is in dire need of methods to deal with cheap, homemade explosives. After Matt the Ex-Army Guy and Alford have demonstrated how to blow a door off its hinges, cut through a 50mm steel bar, and turn a fire extinguisher inside out – “that is unzipped in all known directions, it is a former IED,” says Alford, Pythonesquely – they show me the Bottler and the BootBanger.

They drag beer kegs into the boot of an old blue Nissan Almera, explaining that these were a favoured IRA device: who questions a few beer kegs in the street? First, they stick a Bottler between the front seats, showing how you would disrupt any electronics without setting the vehicle on fire – which would destroy forensic evidence. “They’d usually use a robot,” explains Matt. “And the robot usually leaves [the area], because they’re expensive.” A six-wheeler bomb disposal robot costs around £750,000.

We retreat again to the hut. I must be looking increasingly nervous, because Alford tries to reassure me about the building’s structural integrity: “If it tips over, it will take two weeks to get you out. But they’ll know where to find your body.”

As promised, the explosion is focused – and controlled, in the Alford-approved sense of the word. The windscreen is peeled back, lying on the roof, but the fuel tank didn’t ignite and the back windows are intact. “I know it might look like a mess,” says Matt, “but this would be classified as a result. You use a smaller bit of explosive to get rid of a larger one.”

Finally, it’s time for the big one. Matt slides the BootBanger, shaped like a suitcase, under the back end of the car. It has a curved sheet of 400g of plastic explosive through the middle, sandwiched by water on both sides and encased in nondescript grey plastic.

Now this is a bigger bang. I suddenly see the point of all those “Blasting!” warning signs that surround the quarry. If you drove past and heard this, you’d think the Russians had invaded. As an orange-red flame flashes and a deep, throaty boom fills the quarry, the beer kegs are fired out of the back of the car, pinwheeling 20 feet in the air and coming to rest yards away. Debris rains down on the roof of the hut. I swear I can hear the plinking sound of metal cooling. The car is now missing its back windscreen, and is, it’s fair to say, probably never going to pass another MOT. Nevertheless, it is still recognisably car-shaped; the skeleton is undisturbed.

Unfazed, Alford hurries to the car, and plucks a piece of paper from the boot, clearly left there by a previous owner. It is undamaged.

And then it’s time to rejoin the real world. As he drives me back to Bath, I ask Alford what it feels like to do what he does. He has saved possibly hundreds, maybe thousands of lives. “Yes, but in an already over-populated world,” he sighs.

I know he doesn’t mean it callously; he just doesn’t want credit for what, in his eyes, is barely a job at all. The schoolboy who wanted to make a bigger bang got his wish. 

Helen Lewis is deputy editor of the New Statesman. She has presented BBC Radio 4’s Week in Westminster and is a regular panellist on BBC1’s Sunday Politics.

This article first appeared in the 26 June 2015 issue of the New Statesman, Bush v Clinton 2