Cameron: BBC cuts are “delicious”

“We’re all in it together, including, deliciously, the BBC,” says David Cameron.

David Cameron may insist that he does not "relish" the spending cuts but, in the case of the BBC, he's just allowed the mask to slip. Speaking at a Brussels press conference, the PM began his salvo with a dig at the Beeb for sending too many journalists to cover major events.

He said: "Good to see that costs are being controlled everywhere – let's take the third question from the BBC."

He then shifted things up a gear by declaring that "we're all in it together, including, deliciously, the BBC".

The remark came in response to a question from Newnight's Michael Crick, who asked Cameron how he would justify an EU budget rise of 2.9 per cent to the British public. The PM replied:

I would explain patiently – as I hope you will on Newsnight – that we were facing a 6 per cent increase. We've pegged that back to 2.9 per cent.

At the same time, I will say, 'We're all in it together, including, deliciously, the BBC, who in another negotiation agreed a licence fee freeze for six years. So what is good for the EU is good for the BBC.'

Crick butted in: "We're getting a freeze. We'd love 2.9 per cent." To which Cameron replied: "Well, I'm afraid it's going to be a freeze. I am sure there are some savings available."

In fact, the licence fee freeze and the decision to force the BBC to bear the cost of funding the World Service and S4C means the corporation faces a real-terms cut of 16 per cent.

Cameron's words may seem frivolous enough, but they reflect a firm belief in the Conservative Party that the BBC must "do more with less". Recall Michael Gove's clash with Sarah Montague on the Today programme earlier this year. Gove argued:

I believe in value for money. It is maybe a concept that was alien to the last government and it may not be a concept that the BBC would like to see applied to public expenditure, but I believe that it is important that the taxpayer gets protection for the money that it spent on his or her behalf.

The coalition's drive to reduce the size and scope of the BBC does little to dispel evidence of an informal pact with the Murdoch empire.

Hat-tip: James Kirkup

George Eaton is political editor of the New Statesman.

Getty
Show Hide image

Inside Big Ben: why the world’s most famous clock will soon lose its bong

Every now and then, even the most famous of clocks need a bit of care.

London is soon going to lose one of its most familiar sounds when the world-famous Big Ben falls silent for repairs. The “bonging” chimes that have marked the passing of time for Londoners since 1859 will fall silent for months beginning in 2017 as part of a three-year £29m conservation project.

Of course, “Big Ben” is the nickname of the Great Bell and the bell itself is not in bad shape – even though it does have a huge crack in it.

The bell weighs nearly 14 tonnes and it cracked in 1859 when it was first bonged with a hammer that was way too heavy.

The crack was never repaired. Instead the bell was rotated one eighth of a turn and a lighter (200kg) hammer was installed. The cracked bell has a characteristic sound which we have all grown to love.

Big Ben strikes. UK Parliament.

Instead, it is the Elizabeth Tower (1859) and the clock mechanism (1854), designed by Denison and Airy, that need attention.

Any building or machine needs regular maintenance – we paint our doors and windows when they need it and we repair or replace our cars quite routinely. It is convenient to choose a day when we’re out of the house to paint the doors, or when we don’t need the car to repair the brakes. But a clock just doesn’t stop – especially not a clock as iconic as the Great Clock at the Palace of Westminster.

Repairs to the tower are long overdue. There is corrosion damage to the cast iron roof and to the belfry structure which keeps the bells in place. There is water damage to the masonry and condensation problems will be addressed, too. There are plumbing and electrical works to be done for a lift to be installed in one of the ventilation shafts, toilet facilities and the fitting of low-energy lighting.

Marvel of engineering

The clock mechanism itself is remarkable. In its 162-year history it has only had one major breakdown. In 1976 the speed regulator for the chimes broke and the mechanism sped up to destruction. The resulting damage took months to repair.

The weights that drive the clock are, like the bells and hammers, unimaginably huge. The “drive train” that keeps the pendulum swinging and that turns the hands is driven by a weight of about 100kg. Two other weights that ring the bells are each over a tonne. If any of these weights falls out of control (as in the 1976 incident), they could do a lot of damage.

The pendulum suspension spring is especially critical because it holds up the huge pendulum bob which weighs 321kg. The swinging pendulum releases the “escapement” every two seconds which then turns the hands on the clock’s four faces. If you look very closely, you will see that the minute hand doesn’t move smoothly but it sits still most of the time, only moving on each tick by 1.5cm.

The pendulum swings back and forth 21,600 times a day. That’s nearly 8m times a year, bending the pendulum spring. Like any metal, it has the potential to suffer from fatigue. The pendulum needs to be lifted out of the clock so that the spring can be closely inspected.

The clock derives its remarkable accuracy in part from the temperature compensation which is built into the construction of the pendulum. This was yet another of John Harrison’s genius ideas (you probably know him from longitude fame). He came up with the solution of using metals of differing temperature expansion coefficient so that the pendulum doesn’t change in length as the temperature changes with the seasons.

In the Westminster clock, the pendulum shaft is made of concentric tubes of steel and zinc. A similar construction is described for the clock in Trinity College Cambridge and near perfect temperature compensation can be achieved. But zinc is a ductile metal and the tube deforms with time under the heavy load of the 321kg pendulum bob. This “creeping” will cause the temperature compensation to jam up and become less effective.

So stopping the clock will also be a good opportunity to dismantle the pendulum completely and to check that the zinc tube is sliding freely. This in itself is a few days' work.

What makes it tick

But the truly clever bit of this clock is the escapement. All clocks have one - it’s what makes the clock tick, quite literally. Denison developed his new gravity escapement especially for the Westminster clock. It decouples the driving force of the falling weight from the periodic force that maintains the motion of the pendulum. To this day, the best tower clocks in England use the gravity escapement leading to remarkable accuracy – better even than that of your quartz crystal wrist watch.

In Denison’s gravity escapement, the “tick” is the impact of the “legs” of the escapement colliding with hardened steel seats. Each collision causes microscopic damage which, accumulated over millions of collisions per year, causes wear and tear affecting the accuracy of the clock. It is impossible to inspect the escapement without stopping the clock. Part of the maintenance proposed during this stoppage is a thorough overhaul of the escapement and the other workings of the clock.

The Westminster clock is a remarkable icon for London and for England. For more than 150 years it has reminded us of each hour, tirelessly. That’s what I love about clocks – they seem to carry on without a fuss. But every now and then even the most famous of clocks need a bit of care. After this period of pampering, “Big Ben” ought to be set for another 100 or so years of trouble-free running.

The Conversation

Hugh Hunt is a Reader in Engineering Dynamics and Vibration at the University of Cambridge.

This article was originally published on The Conversation. Read the original article.