One million and one Apple device IDs leaked

AntiSec – part of Anonymous – obtained the data by hacking an FBI agent's laptop.

The AntiSec group of hackers – one of many spun off from the sprawling leviathan that is the Anonymous movement – have released what they claim is a set of 1,000,001 unique device identifiers (UDIDs) for iPhones, iPads and iPod touches, which were stolen from the FBI.

The release also contains the device names and APNS tokens, which are key to getting push notifications onto devices, is in itself a pretty big security breach. It's bigger still given the fact that the default device name for Apple products is "[full name]'s iPhone". Even worse, AntiSec claim that the data is just a small part of a much large trove of personal information, which includes the UDIDs of 12,000,000 devices, and "full names, cell numbers, addresses, zipcodes, etc" for a smaller subset of them.

The group explain (at length) why they've leaked the data, and it boils down to trying to get people's attention that "FUCKING FBI IS USING YOUR DEVICE INFO FOR A TRACKING PEOPLE PROJECT OR SOME SHIT [sic]", though they are also aggreived at what they call the "hypocritical attempt made by the system" to encourage hackers to sign up:

You are forbidden to outsmart the system, to defy it, to work around it. In short, while you may hack for the status quo, you are forbidden to hack the status quo. Just do what you're told. Don't worry about dirty geopolitical games, that's business for the elite. They're the ones that give dancing orders to our favorite general, [NSA's general] Keith [Alexander], while he happily puts on a ballet tutu. Just dance along, hackers. Otherwise... well...

The method by which they claim to have got hold of the data is concerning as well – quite aside from whether or not the FBI ought to have the info, if they do, one would hope that they would store it more securely:

During the second week of March 2012, a Dell Vostro notebook, used by Supervisor Special Agent Christopher K. Stangl from FBI Regional Cyber Action Team and New York FBI Office Evidence Response Team was breached using the AtomicReferenceArray vulnerability on Java, during the shell session some files were downloaded from his Desktop folder one of them with the name of "NCFTA_iOS_devices_intel.csv" turned to be a list of 12,367,232 Apple iOS devices including Unique Device Identifiers (UDID), user names, name of device, type of device, Apple Push Notification Service tokens, zipcodes, cellphone numbers, addresses, etc. the personal details fields referring to people appears many times empty leaving the whole list incompleted on many parts. no other file on the same folder makes mention about this list or its purpose.

AntiSec also expressed their desire that the leak would expose the flaws with the UDID system itself. Even without any extra info leaked, that breach exposes victims to a fair degree of damage. As one programmer, Aldo Cortesi, writes:

If you use an Apple device regularly, it's certain that your UDID has found its way into scores of databases you're entirely unaware of. Developers often assume UDIDs are anonymous values, and routinely use them to aggregate detailed and sensitive user behavioural information.

Apple has been quietly killing the methods by which developers can access UDIDs for the last year or so, removing their ability to directly read them; but that won't prevent at least some users suffering from this leak. A number of older apps and unsecure networks still allow users to log in using just the UDID as identification. Although this hasn't been recommended practice for some time, not everyone runs their companies the way they ought to.

Unfortunately, we won't be able to hear anything else from AntiSec until Gawker journalist Adrian Chen dresses up in a tutu with a shoe on his head. Yes, those are their demands:

no more interviews to anyone till Adrian Chen get featured in the front page of Gawker, a whole day, with a huge picture of him dressing a ballet tutu and shoe on the head, no photoshop. yeah, man. like Keith Alexander. go, go, go. (and there you ll get your desired pageviews number too) Until that happens, this whole statement will be the only thing getting out directly from us. So no tutu, no sources.

The AntiSec logo, in ASCII-art form.

Alex Hern is a technology reporter for the Guardian. He was formerly staff writer at the New Statesman. You should follow Alex on Twitter.

Alan Schulz
Show Hide image

An Amazonian tribe is challenging scientific assumptions about our musical preferences

The Tsimane’ – a population of people in a rural village in Bolivia – are overturning scientists' understanding of why humans prefer consonant sounds over dissonant ones.

It was 29 May 1913. Hoards of Parisians packed out the newly-opened Théâtre des Champs-Élysées. Messrs Proust, Picasso and Debussy were in attendance. Billed for the evening was the premiere of Le Sacre du PrintempsThe Rite of Spring, a ballet and orchestral work debuted by Russian composer Igor Stravinsky.

The attention and conjecture focused on the theatre that day meant expectations were high. However, within moments of the piece beginning, all preconceived notions held by the audience were shattered, as what was unfolding in front of them was a musical tragedy unlike anything they had ever witnessed.

A bassoon hummed into the ether before ballet dancers stomped on stage; the music, unpredictable with its experimental edge, drove forth the onstage narrative of a young girl whose selection during a pagan ritual saw her sacrificially dance towards death. Stravinsky’s composition and the ensemble of the night caused the room to descend from laughter and disruption to chaos and uproar.

The employment of dissonance – sharp, unstable chords – largely contributed to the audience’s disturbed reaction. Dissonant chords create a tension, one which seeks to be resolved by transitioning to a consonant chord – for example an octave or perfect fifth. These musical intervals sound far calmer than the chords which riveted the audience of The Rite of Spring.

Dissonant and consonant intervals find themselves as binary opposites; the frequencies at which notes played together vibrate determine whether an interval is consonant or dissonant. Consonant intervals have simple mathematical relationships between them, but greater digression from that simplicity makes an interval increasingly dissonant.

It’s long been believed  both experimentally and anecdotally – that the preference among Westerners for consonant chords highlights a universal, perhaps biologically-rooted, leaning among all humans towards consonant sounds. If you were present at the introduction of Stravinsky’s The Rite of Spring on that night of furore in Paris, you’d find it hard to disagree.

There is, however, a growing movement against this consensus. Ethnomusicologists and composers alike argue that favouring consonance may just be a phenomenon that has evolved from Western musical culture. And following the visit of a group of researchers to a remote Amazonian society, these claims could well be grounded in scientific evidence.

Led by Josh McDermott, an MIT researcher who studies how people hear, the group travelled to a village in the Amazon rainforest called Santa Maria. It’s populated by the Tsimane’ – a group of native Amazonians whose rural abode is inaccessible by road and foot, and can be reached only by canoe. There are no televisions in Santa Maria and its inhabitants have little access to radio, meaning exposure to Western cultural influences is minimal.

The researchers were curious to see how the Tsimane’ would respond to music, in order to determine whether they too had a preference for consonant sounds over dissonant ones. To everyone’s surprise, the Tsimane’ showed no preference for consonance; the two different sounds, to the Tsimane’ at least, were equally pleasant.

Detailing their research in a paper published by Nature, the group explains how the Tsimane’ people’s indifference to dissonance is a product of their distance from Western culture and music, removing any purported notion that humans are hard-wired to praise perfect fifths and fourths.

McDermott tells me that the Western preference for consonance may just be based on familiarity. “The music we hear typically has more consonant chords than dissonant chords, and we may like what we are most exposed to,” he says. “Another possibility is that we are conditioned by all the instances in which we hear consonant and dissonant chords when something good or bad is happening, for example in films and on TV. Music is so ubiquitous in modern entertainment that I think this could be a huge effect. But it could also be mere exposure.”

To fully gauge the Tsimane’ responses to the music, 64 participants, listening via headphones, were asked to rate the pleasantness of chords composed of synthetic tones, and chords composed of recorded notes sung by a vocalist. At a later date, another 50 took part in the experiment. They had their responses compared to Bolivian residents in a town called San Borja, the capital city La Paz, and residents in the United States – locations selected based on their varying exposures to Western music.

What made the Tsimane’ particularly interesting to McDermott and his group was the absence of harmony, polyphony and group performances in their music. It was something the researchers initially thought may prevent an aesthetic response from forming, but the worry was quickly diminished given the Tsimane’ participants’ measure of pleasantness on the four-point scale they were provided.

Unsurprisingly, the US residents showed a strong preference for consonance – an expected preference given the overrunning of Western music with consonant chords. Meanwhile, the San Borja and La Paz residents demonstrated inclinations towards consonant sounds similar to the US residents. The implication of these results – that consonance preferences are absent in cultures “sufficiently isolated” from Western music – are huge. We most probably aren’t as polarised by consonance and dissonance as we assume; cultural prevalence is far more likely to have shaped the consonant-dominant sounds of Western music.

McDermott raised the question about why Western music may feature certain intervals over others to begin with:

“One possibility is that biology and physics conspire to make conventionally consonant and dissonant chords easy to distinguish, and so that distinction becomes a natural one on which to set up an aesthetic contrast even if the preference is not obligatory. We have a little evidence for this in that the Tsimane' could discriminate harmonic from inharmonic frequencies, which we believe form the basis of the Western consonance/dissonance distinction, even though they did not prefer harmonic to inharmonic frequencies.”

There has been some criticism of this. Speaking to The Atlantic, Daniel Bowling from the University of Vienna said:

“The claim that the human perception of tonal beauty is free from biological constraint on the basis of a lack of full-blown Western consonance preferences in one Amazonian tribe is misleading.”

Though the results from the Amazonian tribe demonstrate a complete refutation of previous assumptions, people's musical preferences from other cultures and places will need to be analysed to cement the idea.

With research beginning to expand beyond WEIRD people – those from a Western, Educated, Industrialised, Rich and Democratic background – the tastes in music of people the world over may continue to surprise, just as the Tsimane’ did.

The Rite of Spring, which was met with ridiculing reviews has now been canonised and is considered to be one of the most important pieces of music of the twentieth century. A Tsimane’ crowd on that tender night a century ago in Paris may have responded with instant praise and elation. With further research, the imagined Bolivian adoration of a Russian composer’s piece in the French city of love may prove music to be the universal language after all.