Dark skies: a view of the milky way during a meteor shower, Myanmar. Photo: Getty
Show Hide image

Dark energy vs dark matter: a battle of two cosmic monsters

Michael Brooks’s Science Column.

It might be the most prestigious journal in physics, but the Physical Review Letters is no good at teasers. Early in November it published a paper entitled: Indications of a Late-Time Interaction in the Dark Sector. Hardly a great headline for what should have been, in the style of Alien v Predator, “Dark Matter v Dark Energy” – a story of two cosmic monsters locked in eternal conflict.

We believe these monsters exist, but we haven’t seen either of them and we know very little about them. We have suspected the existence of dark matter since 1933, when a Swiss astronomer noticed something odd about the way galaxy clusters spin. They looked like they were being held together by the gravitational pull of invisible matter, which he duly named dark matter. We have been trying to see the stuff ever since, to no avail.

Dark energy is a more recent idea. It, too, comes from astronomical observations, this time of supernovae. A 1998 analysis of the light from these stellar explosions suggested that not only is the universe expanding, but this expansion is getting faster all the time. That can only happen with the help of energy from some unknown source – hence dark energy.

Together, dark energy and dark matter make up 96 per cent of the universe. Now, it turns out, dark energy may be consuming the dark matter.

The discovery came from more observations: this time, of the rate at which cosmic structures form. Dark matter seeds galaxy formation, but galaxies aren’t forming as fast as we would expect. This would make sense if dark matter were disappearing from the universe, but various straightforward explanations for why that might occur have failed to correspond with the observed facts. Now a team of British and Italian researchers has created a computer model that does match the observations. Critical to its success is the idea that dark matter is slowly being converted to dark energy.

According to the simulation, the ingestion of dark matter would be a relatively recent phenomenon, beginning roughly eight billion years ago. If it is really happening, it is important to understand, because our attempts to chart the history of the universe depend on dark matter’s role in forming cosmic structures.

Working from observations of the cosmic microwave background radiation, which came into being roughly 300,000 years after the Big Bang, researchers have shown that the radiation’s distribution through the universe would have seeded long filaments of dark matter. The gravitational pull of these filaments attracted the first atoms of normal matter, gradually creating stars and galaxies in long strings. This is the kind of structure we see now.

Yet if dark energy is slowly taking over from dark matter our previous calculations of cosmic history will have to be corrected. And intriguingly (spoiler alert), it will change our predictions. If dark energy is consuming dark matter, the universe will become dominated by dark energy more quickly than previously thought. That will precipitate an inglorious finale in which dark energy’s repulsive power pushes everything interesting away from us.

Eventually, all the other galaxies will be so far away, and receding so fast, that their light will never reach what remains of our Milky Way. Nearby stars will burn out. Our sun is expected to end its life as a huge single crystal of carbon: a dark diamond in the sky, with no surrounding starlight to make it sparkle.

Afterwards, all the atoms will drift apart and then the fundamental particles of matter will slowly decay to nothing. It’s not a Hollywood ending, but don’t complain that you weren’t warned. 

Michael Brooks holds a PhD in quantum physics. He writes a weekly science column for the New Statesman, and his most recent book is At the Edge of Uncertainty: 11 Discoveries Taking Science by Surprise.

This article first appeared in the 27 November 2014 issue of the New Statesman, The rise of the insurgents

Davide Restivo at Wikimedia Commons
Show Hide image

Scientists have finally said it: alcohol causes cancer

Enough of "linked" and "attributable": a new paper concludes that alcohol directly causes seven types of cancer.

I don't blame you if you switch off completely at the words "causes cancer". If you pay attention to certain publications, everything from sunbeds, to fish, to not getting enough sun, can all cause cancer. But this time, it's worth listening.

The journal Addiction has published a paper that makes a simple, yet startling, claim: 

"Evidence can support the judgement that alcohol causes cancer of the oropharynx [part of the throat], larynx, oesophagus, liver, colon, rectum and [female] breast"

So what's especially significant about this? 

First, scientists, unlike journalists, are very wary of the word "causes". It's hard to ever prove that one action directly led to another, rather than that both happened to occur within the same scenario. And yet Jennie Connor, author of the paper and professor in the Preventive and Social Medicine department at the University of Otago, New Zealand, has taken the leap.

Second, alcohol not only causes cancer of one kind – the evidence supports the claim that it causes cancer at seven different sites in our bodies. There was weaker evidence that it may also cause skin, prostate and pancreatic cancer, while the link between mouth cancers and alcohol consumption was the strongest. 

What did we know about alcohol and cancer before?

Many, many studies have "linked" cancer to alcohol, or argued that some cases may be "attributable" to alcohol consumption. 

This paper loooks back over a decade's worth of research into alcohol and cancer, and Connor concludes that all this evidence, taken together, proves that alcohol "increases the incidence of [cancer] in the population".

However, as Connor notes in her paper, "alcohol’s causal role is perceived to be more complex than tobacco's", partly because we still don't know exactly how alcohol causes cancer at these sites. Yet she argues that the evidence alone is enough to prove the cause, even if we don't know exactly how the "biologial mechanisms" work. 

Does this mean that drinking = cancer, then?

No. A causal link doesn't mean one thing always leads to the other. Also, cancer in these seven sites was shown to have what's called a "dose-response" relationship, which means the more you drink, the more you increase your chances of cancer.

On the bright side, scientists have also found that if you stop drinking altogether, you can reduce your chances back down again.

Are moderate drinkers off the hook?

Nope. Rather devastatingly, Connor notes that moderate drinkers bear a "considerable" portion of the cancer risk, and that targeting only heavy drinkers with alcohol risk reduction campaigns would have "limited" impact. 

What does this mean for public health? 

This is the tricky bit. In the paper, Connor points out that, given what we know about lung cancer and tobacco, the general advice is simply not to smoke. Now, a strong link proven over years of research may suggest the same about drinking, an activity society views as a bit risky but generally harmless.

Yet in 2012, it's estimated that alcohol-attributable cancers killed half a million people, which made up 5.8 per cent of cancer deaths worldwide. As we better understand the links between the two, it's possible that this proportion may turn out to be a lot higher. 

As she was doing the research, Connor commented:

"We've grown up with thinking cancer is very mysterious, we don't know what causes it and it's frightening, so to think that something as ordinary as drinking is associated with cancer I think is quite difficult."

What do we do now?

Drink less. The one semi-silver lining in the study is that the quantity of alcohol you consume has a real bearing on your risk of developing these cancers. 

On a wider scale, it looks like we need to recalibrate society's perspective on drinking. Drug campaigners have long pointed out that alcohol, while legal, is one of the most toxic and harmful drugs available  an argument that this study will bolster.

In January, England's chief medical officer Sally Davies introduced some of the strictest guidelines on alcohol consumption in the world, and later shocked a parliamentary hearing by saying that drinking could cause breast cancer.

"I would like people to take their choice knowing the issues," she told the hearing, "And do as I do when I reach for my glass of wine and think... do I want to raise my risk of breast cancer?"

Now, it's beginning to look like she was ahead of the curve. 

Barbara Speed is a technology and digital culture writer at the New Statesman and a staff writer at CityMetric.