"In science, you've got to go against what the elders are saying"

The string theorist Brian Greene has grown from maths prodigy to physics iconoclast. Now he hopes to

As a child, Brian Greene interpreted the story of Icarus differently to most people. "In my naivety, I thought that it was a story about a boy who was bucking authority, not doing what his father said and yet he was paying the ultimate price," he says. "As I got older and became a scientist, it seemed more off-base, because in order to have great breakthroughs in science, you've got to go against what the elders are saying."

Greene has spent his career as a physics professor doing exactly that, exploring the wild frontiers of superstring theory: an unproven, untested and possibly untestable outcrop of theoretical physics. It's an attempt to resolve a conundrum: that we have working explanations of the universe on a grand scale (Einstein's general relativity) and the subatomic scale (quantum mechanics) but no one can reconcile the two. String theory tries to provide a "theory of everything" by suggesting that all matter is, at its smallest level, made of one-dimensional, vibrating loops, whose oscillation patterns determine their mass and "flavour".

For more than a decade, this 48-year-old vegan has been its most compelling advocate. As he wrote in 1999, "String theory has the potential to show that all of the wondrous happenings in the universe -- from the frantic dance of subatomic quarks to the stately waltz of orbiting binary stars; from the primordial fireball of the big bang to the majestic swirl of heavenly galaxies -- are reflections of one, grand physical principle, one master equation."

Greene now lives in upstate New York but he was born in what was, in 1963, a rough district of Manhattan. His father, Alan, a high-school drop-out who became a professional musician and composer, spotted his son's precocious mathematical ability when he was just five and set him to work multiplying 30-digit numbers on huge sheets of construction paper. When that began to pall, he asked the young Brian to calculate the number of inches between the earth and the Andromeda galaxy. "That is a very straightforward calculation," he tells me now, sitting in the tea room of a London hotel, "because people know how far away it is in light years. Then you need to convert light years into miles, miles into feet and feet into inches."

His mother has always been less impressed by what he does. "My mom says: 'Why aren't you a doctor?' and I'm like, 'I am a doctor!' and she's all, 'No, I mean a real doctor.' She reads my books but she says they give her a headache."

His run-down school ran out of things to teach him when he was 11, so one of the staff sent him knocking on the doors of the graduate students at Columbia University, bearing a note: "Take this kid on, he's hungry to learn." Thankfully, one of them did. "For no money," he points out. "Because we didn't have any money. He just did this for the love of learning."

Time travel

It is fitting that Greene is now a professor at Columbia and co-director of its Institute for Strings, Cosmology and Astroparticle Physics. Every few years, he gives what he calls a "report from the trenches" of cutting-edge theoretical physics. In 1999, he wrote an introduction to the subject, The Elegant Universe, followed in 2004 by a book on space-time and the nature of reality. This year, it's parallel universes.

His latest book, The Hidden Reality, suggests that our universe could be one of many, "like slices of bread in a cosmic loaf" or "one expanding bubble in a grand, cosmic bubble bath". He explains the idea of a literal "fabric" of space-time by telling me that a spinning black hole exerts a drag on the space around it, "like a pebble in a vat of molasses -- as the pebble spins, the molasses spins with it". His relaxed, metaphorical prose style has got him into trouble before. One reviewer complained that he "indulge[d] in a pandering sort of lyricism", but of greater concern to Greene were those who read his clear explanations and then turned up at his graduate class expecting to understand the content. One man spent ten years in his basement trying to take his first book's ideas to the next level. "He wrote how his wife almost left him because he wouldn't come out of the basement," Greene tells me. "It was heartbreaking."

Asked to name his scientific hero, he picks Albert Einstein, along with Edward Witten, a Princeton physicist. At the start of the 20th century, Einstein overturned the principles of physics by rejecting Isaac Newton's theory of gravity because it conflicted with his discovery that nothing travels faster than the speed of light. "So many of us," Greene says, "revere [Einstein] but it needs to be said -- because I've seen it reported in an odd way -- that we don't revere Einstein like some gurus of New Age cults may be revered, or some religious leaders. We are constantly critical of everyone's contributions, even Witten's. We look at a given paper, we bang it around, knock it, try to break it."

The same goes for string theory, which could turn out to be completely wrong. "It's a highly speculative subject but I don't shrink from that," he says. "If you ask me: 'Do I believe in string theory?' The answer is: no, I don't. I don't believe anything until it is experimentally proven [and] observationally confirmed."

How would he feel if it turned out to be a blind alley? His answer is surprising. "I would be thrilled." He explains: "I don't mean that in an off-handed way. My emotional investment is in finding truth. If string theory is wrong, I'd like to have known that yesterday. But if we can show it today or tomorrow, fantastic . . . It would allow us to focus our attention on approaches that have a better chance of revealing truth."

This isn't a discipline for the faint-hearted. When Greene was studying for his PhD at Oxford in the 1980s, he was tackling one of the fundamental ideas required to make the maths of string theory work: that there are more than three spatial dimensions. "Our eyes only see the big dimensions but beyond those there are others that escape detection because they are so small," he says. "Yet the exact shape of the extra dimensions has a profound effect on things that we can see, like what the electron weighs, its mass, the strength of gravity."

When he began his doctoral research, there were five possible shapes, one of which he ruled out by mathematical analysis. "The problem was, when I turned back to the list of shapes to look at the second, the list had grown. It was 100. Then 1,000, then 10,000. Ten thousand is still potentially doable -- it would keep an army of graduate students busy for a while -- but, nowadays, it has reached ten to the power of 500, which is an unimaginably huge number; the number of the particles in the observable universe is about ten to the power of 80."

Faced with this abundance, some physicists have decided to abandon the search, while others (including Greene) are trying to find equations to narrow down the field. A third group has a more radical proposal. "Those physicists have said we should take seriously the failure to pick out one shape from the many, because maybe that's telling us there is no unique shape. Maybe the maths is telling us that there are many universes and in each universe one of those shapes is in the limelight."

Mind the gap

Physicists can be an iconoclastic bunch but is there not a danger that their conviction gives fuel to the climate sceptics and creationists who say that science is a belief system, too? "Science is a self-correcting discipline that can, in subsequent generations, show that previous ideas were not correct," Greene counters. "When it comes to climate change . . . [and] the preponderance of data is pointing in a given direction, your confidence needs to rise proportionate to that. The data is very convincing."

He also has trenchant views about religious belief. "My view is that science only has something to say about a very particular notion of God, which goes by the name of 'god of the gaps'. If science hasn't given an explanation for some phenomenon, you could step back and say, 'Oh, that's God.' Then, when science does explain that phenomenon -- as it eventually does -- God gets squeezed out. I think the appropriate response for a physicist is: 'I do not find the concept of God very interesting, because I cannot test it.'"

Before I leave, I raise the idea of the "infinite multiverse", where every possible outcome of an event spins off a different universe. Dropped your piece of toast, buttered side down? There's now a universe where the opposite happened and you didn't have to scrape the fluff off your breakfast. It's one way of dealing with the fact that although a given outcome might have 30 per cent probability, and another might have 70 per cent, nowhere in the laws of physics is there a reason why one happens and not the other.

Doesn't that render the idea of free will redundant? "Yes," he says baldly. "We do not see free will in the equations: you and I are just particles governed by particular laws. Every individual, faced with five choices, would make all five -- one per universe. And all of the choices would be as real as the others." Don't we deserve credit for picking the choice that keeps us in this universe? Greene shakes his head. "Not really, because you are following one trajectory of choices. It is not as though there was a place in the mathematics where your free will dictated that particular set of choices. You are knocked around by the laws of physics, just like all your copies in the other universes."

I look at the preppy professor sitting opposite me drinking a cup of chai and wonder if there is a Brian Greene in another universe who was turned away by every grad student he asked for help. "And joined some gang and just been a street thug?" he says, smiling. "It is possible."

Brian Greene's "The Hidden Reality" is published by Allen Lane (£25)

Helen Lewis-Hasteley is an assistant editor of the New Statesman

Helen Lewis is deputy editor of the New Statesman. She has presented BBC Radio 4’s Week in Westminster and is a regular panellist on BBC1’s Sunday Politics.

This article first appeared in the 06 June 2011 issue of the New Statesman, Are we all doomed?

JEFF HOLT/BLOOMBERG VIA GETTY IMAGES
Show Hide image

A powerful portrait of the Bangladeshi textiles industry

Jeremy Seabrook's The Song of the Shirt goes beyond hand-wringing to investigate the true cost of cheap labour.

On 24 April 2013, an eight-storey commercial building called Rana Plaza in the Bangladeshi capital city, Dhaka, collapsed. Hundreds of bodies were buried in the rubble. The search for the dead went on for weeks. More than 1,000 people lost their lives; 2,500 were injured. The deadliest ­accident at a garment factory in history, the incident shone a light on the dire conditions endured by those who produce cheap clothing for the west.

In a cramped and unstable building, the workers – many of whom were women – stitched clothes for international brands such as Benetton and Primark. Perhaps the most shocking aspect of what happened was the wanton disregard for human life shown by the bosses. The building was clearly structurally unsound. The day before the disaster, cracks had appeared in the walls. But many workers were ordered to return the next day. Some of those who died had yet to receive their first pay cheque.

While the international firms that sold clothes made at Rana Plaza have offered ­financial compensation to the survivors and to families of the victims, not much has happened to improve working conditions in Bangladesh. This is not surprising. Numerous factory fires in recent years, cumulatively resulting in the deaths of hundreds of workers, have also failed to trigger any systemic change.

In his book The Song of the Shirt, Jeremy Seabrook goes beyond the all-too-transient hand-wringing about sweatshops that has typified much of the media coverage of the Rana Plaza collapse and other disasters. Seabrook is nothing if not prolific. He has written about forty books over the course of five decades, many of them focusing on poverty and development, both in the UK and on the Indian subcontinent. For several years he was a columnist for the New Statesman in Kolkata.

The richness of that experience is evident in this book. Researched over the course of many years, it stitches together history, folklore and hundreds of encounters with individual Bangladeshis to give a thorough picture of the structural injustices that have led to the present situation.

“The position of Bangladesh in the division of labour of globalism today is not to clothe the nakedness of the world but to provide it with limitless, cheap garments,” he writes. “The workers are disposable, rags of humanity, as it were, used up like any other raw material in the cause of production for export.”

In lyrical prose, Seabrook places the personal stories of garment workers and their families in a broader context, showing them as dots in a bigger picture of the destructive effects of British colonisation and the injustices of modern globalisation, but also as the inheritors of their history: a people who have long been associated with weaving, in a country at the mercy of the ­elements, where riverbanks break and ­water consumes whatever scant resources the poor have.

The stories of the people Seabrook meets often extend to just a few paragraphs and the chapters, too, are short, sometimes just a couple of pages. Yet this fragmentary approach never feels disjointed. Rather, each small section layers on the last, gradually building up a complex and textured whole that illustrates the ways in which big ideas – colonisation, industrialisation and deindustrialisation – play out on the smallest of levels.

What distinguishes this book is its deep historical consciousness. Quietly outraged, Seabrook sets out in detail how in the 18th century the East India Company deliberately destroyed the long-established weaving industry in Bengal in order to promote British textiles. At times, he makes specific comparisons, noting that the workers of Bengal were forced to produce opium, which was then used for sedatives and medicines that made things “less harsh for the disaffected and sometimes mutinous workers of industrial Britain”.

He also applies these contrasts, which illustrate relative privilege, to the present day, describing children at a factory in Dhaka who stitch clothes together for the lower end of the European and North American markets. “The children of the poor in Bangladesh are making clothes for the children of the poor in the west,” he writes. Elsewhere, he makes a cross-historical comparison between workers in the north of England in the 19th century and today’s Bangladeshi garment workers. Both groups are casualties of unjust capitalism.

Seabrook travels outside Dhaka, notably to Barisal, a city where poverty is so deep that families – many of which have lost what scant land they had to flooding – have no option but to send their daughters to work in the capital’s garment factories. These brief stories are woven into a fabric that displays the relentlessness of poverty in places hardly touched by modernity and the claustrophobic pressing-inwards of structural inequality.

Seabrook is at his best outlining the living conditions of the poor. He tells their stories dispassionately but vividly, always according his subjects dignity. These are people with the odds stacked against them. Lima, a garment worker who has migrated from Barisal to Dhaka, dreams of earning enough money to purchase land in her village and become self-sufficient. Seabrook explains to readers that it would take her 13 years to earn enough to buy a tenth of the land required for self-sufficiency. “Still, she goes about her daily work meekly obedient; her trust is absolute, both in the future and the grace of a God who will not fail her.”

There is not much hope in The Song of the Shirt but, sadly, that is a realistic representation of the situation. At present, for all the moments of collective outrage, there remains a huge demand in the west for cheap clothing, which is met by the supply of cheap labour in southern Asia. And if cheaper labour appears elsewhere, this industry that has sprung up so quickly that its buildings are hardly fit for purpose will instantly relocate.

Fittingly for what begins as a study of mutability, Seabrook ends with a question: “Will the resourcefulness of humanity demand a new and more ample relationship with material resources, one that does not continuously deplete the reservoirs of human energy, nor exhaust the limited treasures of a wasting planet?” We do not yet have an answer.

Samira Shackle is a freelance journalist, who tweets @samirashackle. She was formerly a staff writer for the New Statesman.

This article first appeared in the 27 August 2015 issue of the New Statesman, Isis and the new barbarism