May the force not be with you: Sandra Bullock goes for a spacewalk in Gravity. Photo: Warner Bros
Show Hide image

In search of the notorious Big G: why we still know so little about gravity

Gravity is pathetic and so is our understanding of it.

Gravity is pathetic. The Oscar statuette, for instance, has a mass of 3.85 kilograms but it is pulled down to earth by a force so weak that you can buy a £2.99 fridge magnet that can beat it. It’s shameful that the gravitational pull of the entire earth can be overcome by a cheap piece of magnetised steel.

Gravity is by far the weakest of the fundamental forces of nature (the fridge magnet puts the far stronger electromagnetic force to work). It is so weak that its strength is proving difficult to measure accurately. In late February, while Alfonso Cuarón, the director of the sci-fi film Gravity, was on tenterhooks waiting for the Oscars result, the world’s experts on gravity assembled just outside Milton Keynes in an attempt to sort out this most embarrassing problem.

Numbers such as the strength of gravity, the speed of light and the charge on an electron are known to physicists as the “fundamental constants”. They are in some ways the sticking plaster of physics. We can explain the origin of most things but we know the values of the fundamental constants only by measuring them – there is no way to work them out from a theory.

These days, most are very well defined – but not gravity. It is the only fundamental constant for which our uncertainty over its value has got worse over the years.

The gravitational constant is sometimes known as “Big G”. This differentiates it from “little g”, which describes how fast things accelerate towards Planet Earth when free to fall. The first accurate measurement of Big G was made in 1798. Henry Cavendish used a torsion balance, a device in which two lead weights are attached to the ends of a metal bar. The bar hangs horizontally by a metal wire attached to its midpoint. Cavendish then brought other weights close to one of the lead weights and measured how much the gravitational attraction between the weights twisted the wire. From that measurement, he calculated the strength of gravity.

Cavendish’s accuracy was five parts in 1,000. Over 200 years later, our accuracy stands at roughly one part in 10,000. Given that modern measurements use lasers and electronic devices and Cavendish used a mirror and a candle, it hardly counts as a great improvement.

What’s worse is that our measurements of Big G are getting less accurate. The latest measurement, reported at the end of last year, reduced the overall value by 66 parts per million but the uncertainty
of the value increased from 100 parts per million to 120 parts per million.

The measurement was taken by Terry Quinn, emeritus director of the International Bureau of Weights and Measures in Paris. At its meeting in February, he argued that it was time researchers admitted that everyone must be making some basic errors in their method and that they should give up on making any more unilateral measurements.

The experts now agree that future experiments seeking the value of Big G will be done in big collaborations, with the proposals for equipment and methodology being scrutinised by everyone in advance to minimise the chance of further embarrassment.

It will, they say, mimic the way that researchers worked together to find the Higgs boson. That gave us the secret of mass: the hope is that if the physicists all pull together, they can finally work out exactly what size of force brings that mass down to earth.

Michael Brooks holds a PhD in quantum physics. He writes a weekly science column for the New Statesman, and his most recent book is At the Edge of Uncertainty: 11 Discoveries Taking Science by Surprise.

This article first appeared in the 05 March 2014 issue of the New Statesman, Putin's power game

Davide Restivo at Wikimedia Commons
Show Hide image

Scientists have finally said it: alcohol causes cancer

Enough of "linked" and "attributable": a new paper concludes that alcohol directly causes seven types of cancer.

I don't blame you if you switch off completely at the words "causes cancer". If you pay attention to certain publications, everything from sunbeds, to fish, to not getting enough sun, can all cause cancer. But this time, it's worth listening.

The journal Addiction has published a paper that makes a simple, yet startling, claim: 

"Evidence can support the judgement that alcohol causes cancer of the oropharynx [part of the throat], larynx, oesophagus, liver, colon, rectum and [female] breast"

So what's especially significant about this? 

First, scientists, unlike journalists, are very wary of the word "causes". It's hard to ever prove that one action directly led to another, rather than that both happened to occur within the same scenario. And yet Jennie Connor, author of the paper and professor in the Preventive and Social Medicine department at the University of Otago, New Zealand, has taken the leap.

Second, alcohol not only causes cancer of one kind – the evidence supports the claim that it causes cancer at seven different sites in our bodies. There was weaker evidence that it may also cause skin, prostate and pancreatic cancer, while the link between mouth cancers and alcohol consumption was the strongest. 

What did we know about alcohol and cancer before?

Many, many studies have "linked" cancer to alcohol, or argued that some cases may be "attributable" to alcohol consumption. 

This paper loooks back over a decade's worth of research into alcohol and cancer, and Connor concludes that all this evidence, taken together, proves that alcohol "increases the incidence of [cancer] in the population".

However, as Connor notes in her paper, "alcohol’s causal role is perceived to be more complex than tobacco's", partly because we still don't know exactly how alcohol causes cancer at these sites. Yet she argues that the evidence alone is enough to prove the cause, even if we don't know exactly how the "biologial mechanisms" work. 

Does this mean that drinking = cancer, then?

No. A causal link doesn't mean one thing always leads to the other. Also, cancer in these seven sites was shown to have what's called a "dose-response" relationship, which means the more you drink, the more you increase your chances of cancer.

On the bright side, scientists have also found that if you stop drinking altogether, you can reduce your chances back down again.

Are moderate drinkers off the hook?

Nope. Rather devastatingly, Connor notes that moderate drinkers bear a "considerable" portion of the cancer risk, and that targeting only heavy drinkers with alcohol risk reduction campaigns would have "limited" impact. 

What does this mean for public health? 

This is the tricky bit. In the paper, Connor points out that, given what we know about lung cancer and tobacco, the general advice is simply not to smoke. Now, a strong link proven over years of research may suggest the same about drinking, an activity society views as a bit risky but generally harmless.

Yet in 2012, it's estimated that alcohol-attributable cancers killed half a million people, which made up 5.8 per cent of cancer deaths worldwide. As we better understand the links between the two, it's possible that this proportion may turn out to be a lot higher. 

As she was doing the research, Connor commented:

"We've grown up with thinking cancer is very mysterious, we don't know what causes it and it's frightening, so to think that something as ordinary as drinking is associated with cancer I think is quite difficult."

What do we do now?

Drink less. The one semi-silver lining in the study is that the quantity of alcohol you consume has a real bearing on your risk of developing these cancers. 

On a wider scale, it looks like we need to recalibrate society's perspective on drinking. Drug campaigners have long pointed out that alcohol, while legal, is one of the most toxic and harmful drugs available  an argument that this study will bolster.

In January, England's chief medical officer Sally Davies introduced some of the strictest guidelines on alcohol consumption in the world, and later shocked a parliamentary hearing by saying that drinking could cause breast cancer.

"I would like people to take their choice knowing the issues," she told the hearing, "And do as I do when I reach for my glass of wine and think... do I want to raise my risk of breast cancer?"

Now, it's beginning to look like she was ahead of the curve. 

Barbara Speed is a technology and digital culture writer at the New Statesman and a staff writer at CityMetric.