Resurrecting dinosaurs with medical scanners and 3D printers

CT scans and 3D printers are making it possible to see fossils that were previously inaccessible inside rock.

Accurate copies of fossilised bones can now be made from the combined use of computed tomography (CT) scans and 3D printers, according to a paper published in the journal Radiology.

The technique offers scientists a non-destructive way of transporting and handling rare or fragile fossils.

To protect such specimens from damage during transportation, the fossils are often stored in plaster jackets or casts. These jackets must be strong enough to protect the fossils, but should also separate easily from the specimen when removed.

It is during the removal of the plaster and surrounding sediment that the fossil is in danger of material loss or even destruction. This typically occurs when the plaster is stuck fast to the bone.

(A 3D print of a fossil (right) next to the original still inside a plaster jacket. Image: Courtesy of Radiology and RSNA)

A group of German researchers found that, by using CT and 3D printers, they could separate fossilised bone from its surrounding sediment matrix in a way that would not harm the specimen, then produce a 3D copy of it.

Applying this method to an unidentified fossil from the Museum für Naturkunde in Berlin, the researchers scanned the bone with a 320-slice multi-detector system to show up the different attenuation (absorption of radiation) through the bone and the surrounding sediment matrix, depicting clearly the fossilised vertebra.

The scan also provided information on the condition and integrity of the specimen, like otherwise unknown fractures, and helped the researchers build an accurate reconstruction of the fossil.

Then using a laser sintering system – a process which uses high-powered lasers to fuse materials by adding thin horizontal layers of plastic – an accurate 3D copy of the fossil was produced.

(An enlarged 3D copy of a 380 million year old coelacanth skull found near Fitzroy Crossing, Western Australia. Image: John Long)

The impact on palaeontology
According to Richard Brian Gunderman, a professor of radiology at Indiana University who was not involved in the study, CT scanners are able to determine the exact structural dimensions of an object, down to fractions of a millimetre.

This data can then be used to construct a replica so precise that objects of great historical interest, like Stradivarius violins, have been created to sound remarkably similar to the originals.

“Such a technology has been a boon to palaeontologists in the past few years,” said John Long, strategic professor in palaeontology at Flinders University.

“Once we relied on meticulous time-consuming methods to prepare delicate fossils out of the rock and, even then, we could only see their external features. Now, using high-resolution micro-CT scanners and synchrotrons [particle accelerators], we can investigate every nook and cranny of the fossil right down to individual cells and tissue structures without having to risk damaging the specimen.

“Combined with advanced 3D printing, we can now slice though the ancient fossil skulls and print them in halves showing the full anatomy in clear definition. This will no doubt revitalise palaeontology.”

(A 3D scan of a 380 million-year-old Gogonasus fish skull by Tim Senden and ANU Vizlab.)

Ahi Sema Issever, from the Charité Campus Mitte in Berlin and one of the study’s authors, explained: “The most important benefit of this method is that it is non-destructive so the risk of harming the fossil is minimal. In addition, not only does this method allow for a global exchange of rare fossils in any quantity, data on the specimens can also be digitally shared between research institutes, museums and schools while protecting the original fossil.”

Darren Curnoe, associate professor at the University of New South Wales, agreed, saying: “Famous fossils like the Taung Child in South Africa - the very first ancient ape-like creature found in our human evolutionary tree - has been quite badly damaged following almost 90 years of study by scientists.

“Almost everyone who sees the fossil wants to take a couple of measurements of their own, and by doing so, is damaging these priceless pieces of our collective heritage. We need to do better, and such technology might just be the answer.”

A note of caution
Although supportive of the technological breakthrough in this study, Professor Long warned that researchers must not rely too heavily on tomographic imagery and 3D printing to draw their conclusions.

“It is important to carefully study the preservational biases of the original fossil first to determine how reliable a computer-generated image will be. In some cases, replacement of bone by other minerals or the presence of solid inclusions can effect the quality of CT images and affect 3D printing results.

“Scientists still need to study the original specimens in detail first, and then make interpretations using CT tomography and 3D printing.”

(A scanned 400 million-year-old placoderm eye capsule found in Taemas near Canberra. Image: Tim Senden)

Associate Professor Curnoe agreed, saying: “Any model made from CT scans must properly distinguish actual bone from missing bone, or even from materials like plaster, that had been used in the past to reconstruct missing bones in the fossils. This is particularly important since most fossils found are incomplete or distorted.

“In the end, there is nothing like seeing the real thing to fully understand the anatomy and the state of preservation of a fossil. But, for the sort of work many scientists do, especially postgraduate students, 3D models would be incredibly useful at a time when funding can be very hard to get.”

Beyond fossils
Some experts speculate that the findings from this study will benefit the medical field, like building and fitting implants in orthopaedic surgery. Others feel that the technique could be used to model real bones and other tissues, such as cadavers that have been preserved in ice or peat bogs.

Martin Baumers, a research fellow at the University of Nottingham, would like to see the implementation of a virtual library and data infrastructure for such 3D data and designs. He believes that it would aid collaborative research, allowing experts from different disciplines to share and retrieve 3D models for 3D printing or other scientific, even commercial, usage.

For Professor Long, the biggest breakthrough will come when palaeontologists possess the ability to make portable machines to take into the field and scan fossils, still buried under the rock layers, to determine the full extent of the fossil before excavating it.

This article was originally published at The Conversation. Read the original article.The Conversation

A scan of a 380million-year-old tooth from a fossil shark. (Image: Tim Sendon)
Getty
Show Hide image

How hackers held the NHS to ransom

NHS staff found their computer screens repleaced by a padlock and a demand for money. Eerily, a junior doctor warned about such an attack days earlier. 

On Friday, doctors at Whipps Cross Hospital, east London, logged into their computers, but a strange red screen popped up. Next to a giant padlock, a message said the files on the computer had been encrypted, and would be lost forever unless $300 was sent to a Bitcoin account – a virtual currency that cannot be traced. The price doubled if the money wasn’t sent within six days. Digital clocks were counting down the time.

It was soon revealed Barts Health Trust, which runs the hospital, had been hit by ransomware, a type of malicious software that hijacks computer systems until money is paid. It was one of 48 trusts in England and 13 in Scotland affected, as well as a handful of GP practices. News reports soon broke of companies in other countries hit. It affected 200,000 victims in 150 countries, according to Europol. This included the Russian Interior Ministry, Fedex, Nissan, Vodafone and Telefonica. It is thought to be the biggest outbreak of ransomware in history.

Trusts worked all through the weekend and are now back to business as usual. But the attack revealed how easy it is to bring a hospital to its knees. Patients are rightly questioning if their medical records are safe. Others fear hackers may strike again and attack other vital systems. Defence minister Michael Fallon was forced to confirm that the Trident nuclear submarines could not be hacked.

So how did this happen? The virus, called WannaCry or WannaDecrypt0r, was an old piece of ransomware that had gained a superpower. It had been combined with a tool called EternalBlue which was developed by US National Security Agency spies and dumped on the dark web by a criminal group called Shadow Brokers. Computers become infected with ransomware when somebody clicks on a dodgy link or downloads a booby-trapped PDF, but normally another person has to be fooled for it to harm a different computer. EternalBlue meant the virus could cascade between machines within a network. It could copy itself over and over, moving from one vulnerable computer to the next, spreading like the plague. Experts cannot trace who caused it, whether a criminal gang or just one person in their bedroom hitting "send".

Like a real virus, it had to be quarantined. Trusts had to shut down computers and scan them to make sure they were bug-free. Doctors – not used to writing anything but their signature – had to go back to pen and paper. But no computers meant they couldn’t access appointments, referral letters, blood tests results or X-rays. In some hospitals computer systems controlled the phones and doors. Many declared a major incident, flagging up that they needed help. In Barts Health NHS Trust, ambulances were directed away from three A&E departments and non-urgent operations were cancelled.

The tragedy is that trusts had been warned of such an attack. Dr Krishna Chinthapalli, a junior doctor in London, wrote an eerily premonitory piece in the British Medical Journal just two days earlier telling hospitals they were vulnerable to ransomware hits. Such attacks had increased fourfold between 2015 and 2016, he said, with the money being paid to the criminals increased to $1bn, according to the FBI. NHS trusts had been hit before. A third reported a ransomware attack last year, with Imperial College London NHS Trust hit 19 times. None admitted to paying the ransom.

Hospitals had even been warned of this exact virus. It exploited a vulnerability in Microsoft Windows operating systems – but Microsoft had been tipped off about it and raised the red flag in March. It issued a patch – an update which would fix it and stop systems being breached this way. But this patch only worked for its latest operating systems. Around 5 per cent of NHS devices are still running the ancient Windows XP, the equivalent of a three-wheeled car. Microsoft said it would no longer create updates for it two years ago, rendering it obsolete.

There are many reasons why systems weren’t updated. Labour and the Lib Dems were quick to blame the attack on lack of Tory funding for the NHS. It is clear cost was an issue. Speaking on BBC Radio 4’s PM programme on Saturday, ex-chief of NHS Digital Kingsley Manning estimated it would take £100m a year to update systems and protect trusts against cyber attacks. Even if that money was granted, there is no guarantee cash-strapped trusts would ringfence it for IT; they may use it to plug holes elsewhere.

Yet even with the money to do so updating systems and applying patches in hospitals is genuinely tricky. There is no NHS-wide computer system – each trust has its own mix of software, evolved due to historical quirk. New software or machines may be coded with specific instructions to help them run. Changing the operating system could stop them working – affecting patient care. While other organisations might have time to do updates, hospital systems have to be up and running 24 hours a day, seven days a week. In small hospitals, it’s a man in a van manually updating each computer.

Some experts believe these are just excuses; that good digital hygiene kept most trusts in the UK safe. "You fix vulnerabilities in computers like you wash your hands after going to the toilet," said Professor Ross Anderson, a security engineering expert at Cambridge University. "If you don't, and patients die, excuses don't work and blame shifting must not be tolerated."

It is not known yet if any patients have died as a result of the attack, but it certainly raised fears about the safety of sensitive medical records. This particular virus got into computer files and encrypted them – turning them into gooble-de-gook and locking doctors out. Systems were breached but there have been no reports of records being extracted. Yet the scale of this attack raises fears in future the NHS could be targeted for the confidential data it holds. "If it’s vulnerable to ransomware in this way, it could be vulnerable to other attacks," said Professor Alan Woodward security expert at the University of Surrey's department of computing.

In the US, there have been examples where ransomware attacks have led to patient data being sucked out, he said. The motivation is not to embarrass people with piles or "out" women who have had an abortion, but because medical information is lucrative. It can be sold to criminals for at least $10, a price 10 times higher than can be earned by selling credit card details. Dossiers with personal identification information – known as "fullz" on the dark web – help crooks commit fraud and carry out scams. The more personal details a conman knows about you the more likely you are to fall for their hustle.

Hospital data is backed up at least hourly and three copies are kept, one offsite, so it is unlikely any medical records or significant amounts of data will have been lost – although the hack will cost the NHS millions in disruption. A British analyst, who tweets under the name Malware Tech, became an unlikely hero after accidentally finding a killswitch to stop the virus replicating. He registered a website, whose presence signalled to the virus it should stop. Yet he admits that a simple tweak of the code would create a new worm able to infect computers.

Experts warn this event could trigger a spate of copycat attacks. Hacker may turn their eyes to other public services. Dr Brian Gladman, a retired Ministry of Defence director, and ex-director of security at Nato, points out that our entire infrastructure, from the national grid, food distribution channels to the railways rely on computer systems. We now face an arms race – and criminals only have to get lucky once.

"We’re going to get more attacks and more attacks and it’s going to go on," he said. "We’ve got to pay more attention to this."

Madlen Davies is a health and science reporter at The Bureau of Investigative Journalism. She tweets @madlendavies.

0800 7318496