Meteorite impacts leave behind time-capsules of ecosystems

Glass beads that form inside hot meteors as they fall to Earth capture particles from the atmosphere, creating a kind of permanent record of historic climates.

Meteorite impacts can be very destructive. One that fell in Mexico around 66m years ago created a 180km crater and caused the extinction of dinosaurs while spewing debris and molten rock into the air. Now, in what is a fascinating tale of serendipity, researchers have found that these events don’t entirely destroy all traces of life at the site of impact. Molten rocks can capture and preserve organic matter as they cool down to form glass beads.

When a meteor enters Earth’s atmosphere, the air around the meteor gets very quickly compressed causing it to heat up, scorching everything in its path. Most of the time that is where the story ends, as the meteor burns up in the sky as a “shooting star”. But sometimes it is big enough to reach all the way to the surface and transfer its remaining energy to the ground.

This energy is dissipated, as mild earthquakes, sound shockwaves – but mostly as heat. The heat energy can be so great that it melts rocks on the surface and hurls them up in the atmosphere. Anything that comes in contact with this molten rock would presumably get burnt, leaving nothing but rocky material that cools down in the atmosphere, forming glass beads and tektites (gravel-sized natural glass). This is what City University of New York researcher Kieren Howard assumed, but he was able to show that his assumptions were wrong.

For his PhD, Howard was studying the glass beads and tektites found near the Darwin crater in Tasmania. The 1.2km wide crater was created by a meteorite impact about 800,000 years ago.

The natural glass formed during cooling is (as implied by the term glass) not crystalline. Instead of a regular arrangement of atoms, the atoms inside it are randomly arranged. Howard’s analysis, however, kept showing the presence of crystals. At first, he dismissed this as a problem with the machine or with his method of analysis. But when it kept showing up, as a good scientist, he thought he should ask an expert to look at his data.

“This is unusual,” says Chris Jeynes, a physicist at the University of Surrey. “If there were indeed crystals, then it was the result of uneven cooling, which can occur when something gets trapped inside these glass beads.”

Jeynes used proton-beam analysis, a method to peer inside the glass to reveal its elemental make-up. Inside he found carbon. “Howard had no idea what his samples were, and he was very surprised when I told him,” Jeynes says.

The natural glass formed should contain only silicon, titanium, oxygen and other metallic elements in trace amounts. Detection of carbon meant that there was some organic matter inside. The only hypothesis was that, somehow during the formation of these glass beads, they captured organic matter that was floating in the atmosphere. That organic matter might have already been in the air, but it might also include material thrown up by the impact.

Howard then went to another expert to break open these glass beads and reveal what the carbon-rich matter was. It turned out that it included were cellulose, lignin and other biopolymers. This meant that somehow this matter, which originated from plants, had survived the temperature of more than 500°C, which is what the molten rock would have reached before cooling into a glass bead. Usually these temperatures will break down the organic matter, but clearly it didn’t in this case.

Mark Sephton, a geochemist at Imperial College London, was surprised and pleased: “What the results show is that these glass beads can capture an aliquot of the atmosphere of the planet at impact. It is like a time capsule of that ecosystem.” These results are published in Nature Geoscience.

The implications are enormous. It shows that other meteorite impacts, like the one that wiped out the dinosaurs, could have created such time capsules too. Sephton is now working on finding glass beads from other impact sites to reveal information about Earth’s ancient atmosphere.

This method of analysis means that we could also go looking for similar beads on other planets, like Mars, where meteorite impacts are common. They could also reveal vital information about the past atmosphere of those planets. Maybe they captured organic matter – if it ever existed there.

“We would not know any of this if it wasn’t for Howard,” Jeynes says, adding that Howard’s persistence to find out what “the wrong results” led the researchers to a phenomenon that nobody knew existed.

This article was originally published at The Conversation. Read the original article.

The Conversation

Meteor Crater in Arizona. (Photo: Angle Schatz/Flickr)
Davide Restivo at Wikimedia Commons
Show Hide image

Scientists have finally said it: alcohol causes cancer

Enough of "linked" and "attributable": a new paper concludes that alcohol directly causes seven types of cancer.

I don't blame you if you switch off completely at the words "causes cancer". If you pay attention to certain publications, everything from sunbeds, to fish, to not getting enough sun, can all cause cancer. But this time, it's worth listening.

The journal Addiction has published a paper that makes a simple, yet startling, claim: 

"Evidence can support the judgement that alcohol causes cancer of the oropharynx [part of the throat], larynx, oesophagus, liver, colon, rectum and [female] breast"

So what's especially significant about this? 

First, scientists, unlike journalists, are very wary of the word "causes". It's hard to ever prove that one action directly led to another, rather than that both happened to occur within the same scenario. And yet Jennie Connor, author of the paper and professor in the Preventive and Social Medicine department at the University of Otago, New Zealand, has taken the leap.

Second, alcohol not only causes cancer of one kind – the evidence supports the claim that it causes cancer at seven different sites in our bodies. There was weaker evidence that it may also cause skin, prostate and pancreatic cancer, while the link between mouth cancers and alcohol consumption was the strongest. 

What did we know about alcohol and cancer before?

Many, many studies have "linked" cancer to alcohol, or argued that some cases may be "attributable" to alcohol consumption. 

This paper loooks back over a decade's worth of research into alcohol and cancer, and Connor concludes that all this evidence, taken together, proves that alcohol "increases the incidence of [cancer] in the population".

However, as Connor notes in her paper, "alcohol’s causal role is perceived to be more complex than tobacco's", partly because we still don't know exactly how alcohol causes cancer at these sites. Yet she argues that the evidence alone is enough to prove the cause, even if we don't know exactly how the "biologial mechanisms" work. 

Does this mean that drinking = cancer, then?

No. A causal link doesn't mean one thing always leads to the other. Also, cancer in these seven sites was shown to have what's called a "dose-response" relationship, which means the more you drink, the more you increase your chances of cancer.

On the bright side, scientists have also found that if you stop drinking altogether, you can reduce your chances back down again.

Are moderate drinkers off the hook?

Nope. Rather devastatingly, Connor notes that moderate drinkers bear a "considerable" portion of the cancer risk, and that targeting only heavy drinkers with alcohol risk reduction campaigns would have "limited" impact. 

What does this mean for public health? 

This is the tricky bit. In the paper, Connor points out that, given what we know about lung cancer and tobacco, the general advice is simply not to smoke. Now, a strong link proven over years of research may suggest the same about drinking, an activity society views as a bit risky but generally harmless.

Yet in 2012, it's estimated that alcohol-attributable cancers killed half a million people, which made up 5.8 per cent of cancer deaths worldwide. As we better understand the links between the two, it's possible that this proportion may turn out to be a lot higher. 

As she was doing the research, Connor commented:

"We've grown up with thinking cancer is very mysterious, we don't know what causes it and it's frightening, so to think that something as ordinary as drinking is associated with cancer I think is quite difficult."

What do we do now?

Drink less. The one semi-silver lining in the study is that the quantity of alcohol you consume has a real bearing on your risk of developing these cancers. 

On a wider scale, it looks like we need to recalibrate society's perspective on drinking. Drug campaigners have long pointed out that alcohol, while legal, is one of the most toxic and harmful drugs available  an argument that this study will bolster.

In January, England's chief medical officer Sally Davies introduced some of the strictest guidelines on alcohol consumption in the world, and later shocked a parliamentary hearing by saying that drinking could cause breast cancer.

"I would like people to take their choice knowing the issues," she told the hearing, "And do as I do when I reach for my glass of wine and think... do I want to raise my risk of breast cancer?"

Now, it's beginning to look like she was ahead of the curve. 

Barbara Speed is a technology and digital culture writer at the New Statesman and a staff writer at CityMetric.