Doesn’t kill you: makes you weaker

As things stand a scientific assessment would suggest that Britain is Bangladesh for bees.

Here’s a fun experiment. Give your child – or a neighbour’s child, if you don’t have one of your own – a couple of large glasses of Malbec and then send them off to school. The wine probably won’t kill them, just as the neonicotinoid-based pesticides in routine use on our agricultural land aren’t directly killing bees. The child may well make it across the roads safely and get to school, just as most of the bees are still leaving the hive and finding pollen-bearing flowers. The chances are that the child will perform as badly at school that morning as the pesticideridden bees do at bringing back pollen. But you could still choose to label two glasses of wine a safe dose.

Last month, when the UK government told the EU that neonicotinoids aren’t a proven problem for bees, it brandished scientific evidence. Yet the tests it referred to showed little more than whether the likely doses were lethal. They did not look at whether neonicotinoids hamper a bee’s ability to go about its business effectively – to gather pollen, to navigate between flower sources and hives, or to communicate with other members of the colony.

Better tests show that all these activities are hampered by everyday exposure to neonicotinoids, which may have contributed to the ongoing collapse of bee colonies. For instance, studies carried out by researchers at the University of Stirling found that bumblebees will produce 85 per cent fewer queens. And scientists at Royal Holloway, London, discovered that bumblebees exposed to real-world neonicotinoid levels are 55 per cent more likely to get lost while foraging. That makes sense in the light of studies carried out by researchers at the universities of Newcastle and Dundee, which showed a disruptive effect on the honeybee brain, “observed at concentrations . . . encountered by foraging honeybees and within the hive”.

None of this is surprising. These pesticides are toxins that cause disorder in the brain. Just because they don’t cause immediate observable harm to a single bee when the chemicals are assessed individually doesn’t mean they are not a problem when all the various neurotoxins in the bee’s environment accumulate. As the Dundee and Newcastle researchers reported, “exposure to multiple pesticides . . . will cause enhanced toxicity”. There are probably safe doses of gin, vodka and whisky for a toddler. Give those measures all at once, however, and harm will ensue.

Anyone can avoid accepting inconvenient evidence in science, where findings are rarely black and white. A paper published last autumn in the journal Environmental Health Perspectives, for instance, demonstrates how epidemiologists and toxicologists work out the effects of interacting exposures to chemicals in different ways, which can lead to completely different conclusions about whether there is any effect at all.

But arguing over definitions is no good to bees. The collapse of the jerry-built garment factory in Dhaka, Bangladesh, last month offers a salutary lesson applicable to bee-colony collapse: you can rationalise the greedy pursuit of short-term gain all you like, but if catastrophe strikes, you are still responsible for the loss.

Economists put the annual value of insect pollinators to the UK economy at roughly £440m. Moral considerations aside, ensuring that their working conditions are as safe and sustainable as possible seems to make economic good sense. As things stand, however – and soon they might fall – a scientific assessment would suggest that Britain is Bangladesh for bees.

Bees. Photograph: Getty Images

Michael Brooks holds a PhD in quantum physics. He writes a weekly science column for the New Statesman, and his most recent book is At the Edge of Uncertainty: 11 Discoveries Taking Science by Surprise.

This article first appeared in the 13 May 2013 issue of the New Statesman, Eton Mess

Photo: Getty
Show Hide image

Space suicide: the sad but noble death of the Cassini probe

It’s not surprising that scientists and space geeks around the world will bid it adieu with a heavy heart.

Since April 2016, a Twitter bot called @CassiniNoooo has been tweeting out “Nooooo” followed by random numbers of “O”s. The last tweet sent by the bot is just “I......”.  

The account has been paying a light-hearted tribute to one of the most important important scientific projects of recent times, and one which is soon to come to an end. 

Launched in 1997, Cassini-Huygens is a plutonium-powered probe that has been circling Saturn since 2004. Providing teams of scientists with unparalleled images of Saturn and its moons, it has allowed experts to examine the composition of solar bodies one billion miles away.

But on 15 September, Cassini will begin its final mission, referred to by Nasa scientists as its "Grand Finale". It will shed its modules and sensors as it heads towards a final fiery death in Saturn's gaseous atmosphere.

When news of Cassini's impending end was announced in April, scientists, casual space fans, engineers, teachers and other assorted stargazers expressed sadness about the craft’s suicide mission. Many are expected to tune in to watch the live stream of the probe's final moments on Nasa’s dedicated webpage

Cassini has provided some of the most intriguing discoveries about our solar system. It discovered a saltwater ocean under the icy surface of one of Saturn’s moons, Enceladus, by "tasting" molecules – a finding that could, in theory, support alien life. It also took photographs of Titan, a moon bigger than Mercury, which enabled scientists on earth to discover liquid on its surface – only the second body in the universe to have free-standing liquid after our own planet. 

In a way, Cassini's discoveries signed its own death warrant. Potentially life-supporting pristine environments must not be contaminated by Earth-originating microbes and, left to its own devices, Cassini could collide with one of the moons it discovered so much about.

Faithful until its last moment, Cassini will be diving in and out of the space between Saturn and its rings as it reaches the end of its final orbit, a feat never achieved before, transmitting completely novel data that would be too risky to gather unless it was already destined for immolation.

Cassini's contribution to science, laid out in this oddly moving webpage from Nasa, not only allowed us a deeper understanding of our solar system, but also helped us picture other kinds of worlds. It's a service that has been recognised well beyond academics or professional scientists. One six-year-old is even throwing Cassini a goodbye party, with a themed cake and games – because, he said, it was the “only spacecraft he ever knew”. Others have tweeted out music composed for Cassini, and comics depicting their versions of its final moments.

It has not been easy for the scientists who had to approve the decision to kill Cassini. In a press conference on 4 April, roughly three weeks before Cassini started its final orbit, Linda Spilker, a planetary scientist at Nasa's Jet Propulsion Laboratory, admitted that it was hard to say goodbye to their “plucky, capable little spacecraft”. Some even referred the probe as their child.

On Earth, we get to think of these robotic explorers like astro-ambassadors, not least because so much of the current discussion around space monitoring centres on how information collected will enable life in space for humans. Now one of those ambassadors is about to make its final visit to a foreign planet, long before its creators will get to make their own introductions.