Don’t let the superbugs bite

But don't despair - we might be struggling but we are not beaten yet.

Evolution continues to be a bitch. Recently scientists gathered in Kensington, London, to have a good moan and to plan what can be done about it. “Superbugs and Superdrugs” is a great title for a meeting. Unfortunately the bugs seem to be more super than the drugs.

While that meeting went on, the US Centres for Disease Control and Prevention (CDC) issued a warning that we are entering a “nightmare” era. The CDC’s problem is a killer bacterium known as CRE, which is spreading in the US. Some strains of CRE are not only resistant to all antibiotics; they are also passing on that resistance to other bacteria, creating drug-resistant strains of E coli, for instance. On 11 March, Sally Davies, the UK government’s chief medical officer, asked the government to add the superbug problem to its “strategic risk register”, which highlights potentially catastrophic threats to the UK.

For a while, it all looked so good. When scientists discovered penicillin, then ever more weapons for our antibiotic arsenal, it seemed that bacteria had been defeated. The problem is, they fought back.

For all the worry over CRE, perhaps nowhere is this antibiotic resistance more evident than with tuberculosis. In the west, we won the war on TB so convincingly that receiving the BCG vaccine against it – once a waymark in British childhood – is no longer routine. Only in certain inner-city communities where migrant populations increase the likelihood of encountering the TB bacterium are children routinely immunised. However, in 2011, the World Health Organisation marked London out as the city with the highest TB infection rate in western Europe.

Many resistant bacteria originate in hospitals, where pharmaceutical regimes kill off the normal strains, making space in which bacteria that are naturally resistant can proliferate. Yet you can’t always blame the drugs. Research published at the end of February shows that drug resistance can arise even when the bacteria have never encountered a chemical meant to kill them.

In the study, E coli bacteria were made to suffer by exposing them to heat and restricting the nutrients in their environment. According to conventional wisdom, this should have kept proliferation in check – but it caused a spontaneous mutation that made the E coli resistant to rifampicin, one of the weapons in our antibiotic arsenal. What is worse is the observation that there was good reason for this mutation to arise: it made the stressful conditions more survivable. Bacteria with the mutation grew much faster.

Bacteria are survivors – if they can’t magic up a spontaneous mutation, they’ll pick one up in the street. A sampling of puddles in New Delhi showed that almost a third contain the genetic material that allows bacteria to produce an enzyme that destroys a swath of antibiotics. The NDM-1 gene is particularly evil. Its tricks include forcing itself into gut bacteria such as E coli that are incorporated into faeces; as a result, the resistant strains travel between hosts with ease.

Many infections involving a bacterium carrying NDM-1 are untreatable. GlaxoSmithKline is reportedly developing a drug to deal with it but it is years behind the curve. In the autumn, an EU project to mine the seabed for so far undiscovered antibiotics will start up, but it will take years for that, too, to bear fruit.

Let’s end on a positive note. Superbugs might be evolving in fiendish ways but they’re doing it blind and they’re up against evolution’s greatest invention – the human brain. We might be struggling but we are not beaten yet.

The EHEC bacteria. Image: Getty Images

Michael Brooks holds a PhD in quantum physics. He writes a weekly science column for the New Statesman, and his most recent book is At the Edge of Uncertainty: 11 Discoveries Taking Science by Surprise.

This article first appeared in the 25 March 2013 issue of the New Statesman, After God

Getty
Show Hide image

An antibiotic-resistant superbug is silently spreading through UK hospitals

There have already been outbreaks in Manchester, London, Edinburgh, and Birmingham, but deaths are not centrally recorded. 

Lying in a hospital bed, four months pregnant, Emily Morris felt only terror. She had caught a urinary tract infection and it was resistant to common antibiotics. Doctors needed to treat it as it could harm the baby, but the only drugs that could work hadn’t been tested on pregnant women before; the risks were unknown. Overwhelmed, Emily and her husband were asked to make a decision. A few hours later, gripping each other’s arms, they decided she should be given the drugs.

In Emily’s case, the medicine worked and her son Emerson (pictured below with Emily) was born healthy. But rising antibiotic resistance means people are now suffering infections for which there is no cure. Doctors have long warned that decades of reliance on these drugs will lead to a "post-antibiotic era"– a return to time where a scratch could kill and common operations are too risky.

It sounds like hyperbole – but this is already a reality in the UK. In the last four years 25 patients have suffered infections immune to all the antibiotics Public Health England tests for in its central lab, the Bureau of Investigative Journalism has discovered.

While these cases are rare, reports of a highly resistant superbug are rising, and infection control doctors are worried. Carbapenem resistant enterobacteriaceae (CRE) are not only difficult to pronounce, but deadly. These are bugs that live in the human gut but can cause an infection if they get into the wrong place, like the urinary tract or a wound. They have evolved to become immune to most classes of antibiotics – so if someone does become infected, there are only a few drugs that will still work. If CRE bacteria get into the bloodstream, studies show between 40 per cent and 50 per cent of people die.

These bugs are causing huge problems in India, certain parts of Asia, the Middle East and some countries in southern Europe. Until recently, most infections were seen in people who had travelled abroad, had family members who had, or had been in a foreign hospital. The boom in cheap cosmetic surgery in India was blamed for a spate of infections in Britain.

Now, doctors are finding people who have never boarded a plane are carrying the bug. There have already been outbreaks in Manchester, London, Liverpool, Leeds, Edinburgh, Birmingham, Nottingham, Belfast, Dublin and Limerick among other areas. Patients found with CRE have to be treated in side rooms in hospital so the bacteria does not spread and harm other vulnerable patients. But in many of Britain’s Victorian-built hospitals, single rooms are in sparse supply. Deaths from CRE aren’t centrally recorded by the government - but it is thought hundreds have already died. 

Across the country, doctors are being forced to reach for older, more toxic drugs to treat these infections. The amount of colistin – called the "last hope" antibiotic as it is one of few options still effective against CRE infections - rose dramatically in English hospitals between 2014 and 2015, the Bureau has revealed. Colistin was taken off the shelves soon after it was introduced, as it can harm the kidneys and nervous system in high doses, but was reintroduced when infections became immune to standard treatment. The more we use colistin the more bacteria develop resistance to it. It’s only a matter of time before it stops working too, leaving doctors’ arsenal near-empty when it comes to the most dangerous superbug infections.

Due to a kidney problem, Emily Morris suffers repeat urinary tract infections and has to be hospitalised most months. Her son Emerson comes to visit her, understanding his mummy is ill. If she catches a superbug infection, she can still be given intravenous antibiotics to stem it. But she worries about her son. By the time he is an adult, if he gets ill, there may be no drugs left that work.

Madlen Davies is a health and science reporter for the Bureau of Investigative Journalism