In science, no work is completed until it has been picked to pieces

Dangerous dithering.

What does a scientist have to do to convince you? The answer used to be “wait until his critics die” – hence the physicist Max Planck’s assertion that science advances one funeral at a time.

But sometimes even that is not enough. Late last month, the smell researcher Luca Turin published striking new evidence supporting an idea first put forward by Sir Malcolm Dyson in 1938. Dyson presented his “vibrational” theory of how our sense of smell works to universal apathy. Three generations later, scientists are still saying “meh”.

That year, 1938, was also when it was first argued that pumping carbon dioxide into the atmosphere would raise global temperatures. The idea came from the steam engineer Guy Stewart Callendar; the broad response was “implausible”. Today, in 2013, scientists have shifted: they generally agree that Callendar was right. Yet there remains a dangerous level of disagreement about the detail.

At least Turin’s scientific peers have presented him with a clear path to follow. Dyson’s idea was that when a molecule gets up our nose, its characteristic smell is created by the way the bonds within that molecule vibrate. In a clever piece of experimental work, Turin has shown that human beings can distinguish between two molecules that differ only in the way they vibrate. The two molecules tested were both cyclopentadecanone, but while one contained normal hydrogen atoms the other contained “deuterated” hydrogen, which has an added neutron in its atomic nucleus. The additional particle creates a difference in the way the molecules vibrate. And that is why, according to Turin, they smell different to us.

The experiment punches a hole in the accepted theory of smell, which says that smell experiences are triggered by differently shaped molecules fitting different receptors in the nose. This “lock and key” idea can’t explain why two identically shaped molecules smell different. But Turin’s critics said last month that before they will even consider accepting his theory, they want him to show exactly what goes on in human smell receptors.

They are right to make such demands. This is science, where no work is finished until it has been picked to pieces. But that is exactly why it has been so easy to do so little about climate change since 1938. Later this year, the Intergovernmental Panel on Climate Change will make some highly equivocal, backtracking announcements. In a report due for release in December, the IPCC will concede that we can’t be sure tropical cyclones will become more frequent, or that droughts will get worse. Worries that the Gulf Stream will collapse, tentatively raised in the 2007 IPCC report, are allayed: such an event is “unlikely” to occur in the foreseeable future.

Concern over details can have an unhelpful effect, masking the big picture on climate change – the one that Nicholas Stern, who wrote the UK government’s 2006 review on the science, said at Davos last month is “far, far worse” than we were led to believe originally. Until that, rather than the detail, becomes the focus, we can continue to dither over whether to do anything, let alone deciding what course we might take.

It does not matter a great deal that no one is willing to risk his career by backing Luca Turin – but to wait for absolute certainty over the details of climate change before we do anything about it will spell life or death for many. If science continues to advance one funeral at a time, its acceleration is assured; and there will be no shortage of funerals in a world that’s 4° warmer.

Michael Brooks holds a PhD in quantum physics. He writes a weekly science column for the New Statesman, and his most recent book is At The Edge of Uncertainty: 11 Discoveries Taking Science By Surprise.

This article first appeared in the 11 February 2013 issue of the New Statesman, Assange Alone

JACQUES DEMARTHON/AFP/Getty Images
Show Hide image

Why aren’t there more scientists in the National Portrait Gallery?

If the National Portrait Gallery celebrates the best of British achievements, there’s a vast area that is being overlooked.

The National Portrait Gallery (NPG) in London is my favourite place to visit in the city, even though I’m a mere scientist, or uncultured philistine as the gallery’s curators might consider me. Much of my research involves “omics”. We have “genomics” and “transcriptomics" to describe the science of sequencing genomes. “Proteomics” characterises our proteins and “metabolomics” measures refers to the small chemical “metabolites” from which we’re composed. The “ome” suffix has come to represent the supposed depiction of systems in their totality. We once studied genes, but now we can sequence whole genomes. The totality of scientific literature is the “bibliome”. The NPG purports to hang portraits of everyone who is anyone; a sort of “National Portraitome”.

However, I am increasingly struck by the subjective view of who is on display. Some areas of British life get better coverage than others. Kings and queens are there; Prime ministers, authors, actors, artists and playwrights too. But where are the scientists? Those individuals who have underpinned so much of all we do in the modern world. Their lack of representation is disappointing, to say the least. A small room on the ground floor purports to represent contemporary science. An imposing portrait of Sir Paul Nurse, Nobel laureate and current president of the world’s most prestigious science academy (the Royal Society (RS)) dominates the room. Opposite him is a smaller picture of Nurse’s predecessor at the RS, astronomer Martin Rees. James Dyson (the vacuum cleaner chap), James Lovelock (an environmental scientist) and Susan Greenfield all have some scientific credentials. A couple of businessmen are included in the room (like scientists, these people aren’t artists, actors, playwrights or authors). There is also one of artist Mark Quinn’s grotesque blood-filled heads. Some scientists do study blood of course.

Where are our other recent Nobel winners? Where are the directors of the great research institutes, funding bodies, universities and beyond? Does the nation really revere its artists, playwrights and politicians so much more than its scientists? I couldn’t find a picture of Francis Crick, co-discoverer of the key role played by DNA in genetics. Blur, however, are there. “Parklife” is certainly a jaunty little song, but surely knowing about DNA has contributed at least as much to British life.

Returning to my “omics” analogy, the gallery itself is actually more like what’s called the “transcriptome”. Genes in DNA are transcribed into RNA copies when they are turned on, or “expressed”. Every cell in our body has the same DNA, but each differs because different genes are expressed in different cell types. Only a fraction of the NPG’s collection ends up “expressed” on its walls at any one time. The entire collection is, however, available online. This allows better insight into the relative value placed upon the arts and sciences. The good news is that Francis Crick has 10 portraits in the collection – considerably more than Blur. Better still, Sir Alexander Fleming, the Scottish discoverer of antibiotics has 20 likenesses, two more than Ian Fleming, creator of James Bond. I had suspected the latter might do better. After all, antibiotics have only saved hundreds of millions of lives, while Bond saved us all when he took out Dr No.

To get a broader view, I looked at British winners of a Nobel Prize since 1990, of which there have been 27. Three of these were for literature, another three each for economics and physics, a couple for peace, five for chemistry and 11 for physiology or medicine. The writers Doris Lessing, Harold Pinter and V S Naipaul respectively have 16, 19 and five portraits in the collection. A majority of the scientist winners have no portrait at all. In fact there are just 16 likenesses for the 24 non-literature winners, compared to 40 for the three writers. Albeit of dubious statistical power, this small survey suggests a brilliant writer is around 20 times more likely to be recognised in the NPG than a brilliant scientist. William Golding (1983) was the last British winner of a Nobel for literature prior to the 90s. His eight likenesses compare to just two for Cesar Milstein who won the prize for physiology or medicine a year later in 1984. Milstein invented a process to create monoclonal antibodies, which today serve as a significant proportion of all new medicines and generate over £50bn in revenue each year. Surely Milstein deserves more than a quarter of the recognition (in terms of portraits held in the gallery) bestowed upon Golding for his oeuvre, marvellous as it was.

C P Snow famously crystallised the dichotomy between science and the humanities in his 1959 Rede lecture on “The Two Cultures and the Scientific Revolution” (which was based on an article first published in the New Statesman in 1956). He attacked the British establishment for entrenching a cultural preference for the humanities above science, a schism he saw growing from the roots of Victorian scientific expansion. The gallery supports Snow’s view. Room 18, my favourite, “Art, Invention and Thought: the Romantics” covers that turbulent period covering the late eighteenth and early nineteenth centuries. Here we find the groundbreaking astronomer (and harpsichordist) William Herschel, the inventor of vaccination Dr Edward Jenner, the pioneering chemist Humphrey Davy and the physicist who came up with the first credible depiction of an atom, John Dalton. Opposite Jenner (who also composed poetry) is the portrait of another medically trained sitter, John Keats, who actually swapped medicine for poetry. Wordsworth, Coleridge, Burns, Blake, Clare, Shelley and Byron, all adorn the walls here. The great Mary Shelly has a space too. She wrote Frankenstein after listening to Davy’s famous lectures on electricity. The early nineteenth century saw the arts and science united in trying to explain the universe.

Room 27, the richest collection of scientists in the building, then brings us the Victorians. The scientists sit alone. Darwin takes pride of place, flanked by his “bull dog” Thomas Huxley. Other giants of Victorian science and invention are present, such as Charles Lyell, Richard Owen, Brunel, Stephenson, Lister and Glasgow’s Lord Kelvin. Inevitably the expansion of science and understanding of the world at this time drove a cultural divide. It’s less clear, however, why the British establishment grasped the humanities to the bosom of its cultural life, whilst shunning science. But as the gallery portrays today, it is a tradition that has stuck. However, surely the NPG however has an opportunity to influence change. All it needs to do is put some more scientists on its walls.