Egos and intensity in the search for dark matter

Voices in the dark.

In the next few weeks, the world’s most sensitive dark matter detector will begin its operations under Italy’s Gran Sasso mountain. This seems a good time to point out that it is sharing the mountain with a detector that may already have found some. What a shame, then, that what might one day be viewed as a historic result has been mired in petty name-calling.

We’ve been looking for dark matter since 1933, when the astronomer Fritz Zwicky pointed out that clusters of galaxies move in ways that seemingly defy the laws of physics. The movement made sense only if the clusters were experiencing a gravitational pull from some invisible stuff nearby.

For various reasons, mostly to do with other astronomers not liking Zwicky very much, we’ve been searching for dark matter seriously only since the 1970s. During those four decades, there has been a series of pronouncements about its discovery being only a decade away. It might now be time to take those pronouncements a little more seriously: lately, the sensitivity of detectors has been improving tenfold every two years. We must surely be on the verge of finally nailing down the existence of dark matter. If we haven’t already, that is.

Dark matter doesn’t just hold gravity clusters together – it’s everywhere. It’s right here on earth, for instance: billions of dark matter particles fly through your body every second. You won’t feel them and they won’t harm you. They don’t interact much with the stuff of our everyday reality, which is what has made them so hard to detect.

While we don’t have any concrete detections of single particles, we do seem to have a discernible signal from passing through clouds of dark matter. It was first spotted by the DAMA dark matter detector, which is based, like the new DarkSide-50 detector, deep under the mountains at Gran Sasso. The rock covering them protects the instruments from distracting sources of noise.

In 2008, DAMA’s operators announced that they had identified a signal that rose and faded with the seasons. It might have been ignored, except that this is exactly what Katherine Freese predicted for a dark matter signal in 1986. She said that the intensity of dark matter detections should depend on the time of year, because as the earth whirls round the sun and the sun moves through the Milky Way, the amount of dark matter hitting the detectors will ebb and flow. It’s rather like the difference between walking into wind-driven rain, then turning and walking the other way. In June, dark matter hits Planet Earth full in the face; in December, it’s at our back.

So, it was pretty exciting that DAMA’s detector saw this predicted pattern. It was even more exciting when another detector, CoGeNT, based in a deep underground mine in Minnesota, also saw it. It’s a shame that a third detector, Xenon, didn’t.

Xenon is also in the Gran Sasso mine and there is no love lost between the leaders of these two research efforts. CoGeNT’s Juan Collar has called Xenon’s science “pure, weapons-grade balonium”. Not content with antagonising his peers, Collar has also accused the DAMA project of “cheapening the level of our discourse to truly imbecilic levels”.

Finding dark matter is proving to be astonishingly difficult and everyone knows there’s a Nobel prize at stake, so it’s not surprising that the claws are out.

Anyway, welcome to the fray, DarkSide-50; there is definitely room for more players in this competition. Whether there is room for more egos, however, is another matter.

Inside the DarkSide-50 experiment.

Michael Brooks holds a PhD in quantum physics. He writes a weekly science column for the New Statesman, and his most recent book is At the Edge of Uncertainty: 11 Discoveries Taking Science by Surprise.

This article first appeared in the 18 February 2013 issue of the New Statesman, Iraq: ten years on

Getty
Show Hide image

An antibiotic-resistant superbug is silently spreading through UK hospitals

There have already been outbreaks in Manchester, London, Edinburgh, and Birmingham, but deaths are not centrally recorded. 

Lying in a hospital bed, four months pregnant, Emily Morris felt only terror. She had caught a urinary tract infection and it was resistant to common antibiotics. Doctors needed to treat it as it could harm the baby, but the only drugs that could work hadn’t been tested on pregnant women before; the risks were unknown. Overwhelmed, Emily and her husband were asked to make a decision. A few hours later, gripping each other’s arms, they decided she should be given the drugs.

In Emily’s case, the medicine worked and her son Emerson (pictured below with Emily) was born healthy. But rising antibiotic resistance means people are now suffering infections for which there is no cure. Doctors have long warned that decades of reliance on these drugs will lead to a "post-antibiotic era"– a return to time where a scratch could kill and common operations are too risky.

It sounds like hyperbole – but this is already a reality in the UK. In the last four years 25 patients have suffered infections immune to all the antibiotics Public Health England tests for in its central lab, the Bureau of Investigative Journalism has discovered.

While these cases are rare, reports of a highly resistant superbug are rising, and infection control doctors are worried. Carbapenem resistant enterobacteriaceae (CRE) are not only difficult to pronounce, but deadly. These are bugs that live in the human gut but can cause an infection if they get into the wrong place, like the urinary tract or a wound. They have evolved to become immune to most classes of antibiotics – so if someone does become infected, there are only a few drugs that will still work. If CRE bacteria get into the bloodstream, studies show between 40 per cent and 50 per cent of people die.

These bugs are causing huge problems in India, certain parts of Asia, the Middle East and some countries in southern Europe. Until recently, most infections were seen in people who had travelled abroad, had family members who had, or had been in a foreign hospital. The boom in cheap cosmetic surgery in India was blamed for a spate of infections in Britain.

Now, doctors are finding people who have never boarded a plane are carrying the bug. There have already been outbreaks in Manchester, London, Liverpool, Leeds, Edinburgh, Birmingham, Nottingham, Belfast, Dublin and Limerick among other areas. Patients found with CRE have to be treated in side rooms in hospital so the bacteria does not spread and harm other vulnerable patients. But in many of Britain’s Victorian-built hospitals, single rooms are in sparse supply. Deaths from CRE aren’t centrally recorded by the government - but it is thought hundreds have already died. 

Across the country, doctors are being forced to reach for older, more toxic drugs to treat these infections. The amount of colistin – called the "last hope" antibiotic as it is one of few options still effective against CRE infections - rose dramatically in English hospitals between 2014 and 2015, the Bureau has revealed. Colistin was taken off the shelves soon after it was introduced, as it can harm the kidneys and nervous system in high doses, but was reintroduced when infections became immune to standard treatment. The more we use colistin the more bacteria develop resistance to it. It’s only a matter of time before it stops working too, leaving doctors’ arsenal near-empty when it comes to the most dangerous superbug infections.

Due to a kidney problem, Emily Morris suffers repeat urinary tract infections and has to be hospitalised most months. Her son Emerson comes to visit her, understanding his mummy is ill. If she catches a superbug infection, she can still be given intravenous antibiotics to stem it. But she worries about her son. By the time he is an adult, if he gets ill, there may be no drugs left that work.

Madlen Davies is a health and science reporter for the Bureau of Investigative Journalism