Your body’s superpowers

The remarkable abilities already inside us.

Norovirus might have laid you low for a short while, but you’re recovering, aren’t you? Your immune system is to die for. Researchers are still getting to grips with how it works but at every turn it has thrown out marvellous surprises. In the early days of vaccination against tuberculosis, for example, it was noted that it protected you not only from TB, but a host of other diseases, too.

We still don’t know why; it’s clear that we have yet to understand the full power of the human immune system. Just in December, for instance, we learned that the system’s T-cells, which fight viruses and bacteria, are not all created equal. Almost all of our knowledge of human T-cells has come from blood samples. But research using T-cells harvested from the organs of New York cadavers has shown that each region of the body has its own particular way of fighting invaders. Columbia University’s Donna Farber, who led the study, believes this discovery may open up the path to tightly focused vaccines that can activate the most appropriate of the body’s immune responses.

Her optimism is supported by another surprise the immune system has just delivered. New Scientist reported this month that there is now hope for a vaccine against age-related macular degeneration (AMD), an incurable condition that blinds millions of people around the world.

AMD comes from the build-up of proteins and other debris on the retina. In healthy people this is cleared away by specialist cells. Those cells stop working in people with AMD. This appears to have two consequences: the build-up of debris continues and the light-sensitive cells of the retina beneath the debris start to die off. The result is a slowly widening black hole at the centre of your field of vision.

Pioneering treatments with a laser can stimulate the nonfunctioning cells to get them going again, which is exactly what Robyn Guymer of the University of Melbourne was trying to do in his trial on 50 patients. The idea was to try the laser treatment in one eye and leave the other eye as a control. Then tests on each eye would show what improvements the procedure could give.

So, you could imagine it was a little frustrating that in the tests the lasered eye didn’t seem to be that much better than the one that had been left alone. But Guymer soon realised this was because the vision of the untreated eye had also improved. The laser surgery had stimulated the patients’ immune system to respond to alarm calls from the eye.

Your eyes are usually offlimits to your immune system. It seems a sensible evolutionary trick, because the immune system’s standard response causes inflammation, which could be catastrophic in an instrument as sensitive as the eye. However, the cells destroyed by the laser appear to send out a signal so loud that the immune system overrides the safety mechanism and sends in the troops – to both eyes – to restore order.

There is now hope that AMD can be treated with a routine procedure at a very early stage, and that those most at risk of developing it can have their immune systems stimulated before the symptoms appear. But there is a wider lesson: with various successes in vaccines against cancer – particularly colon cancer – looking likely in the next few years, it’s becoming clear that the most profitable path for medicine might be to explore partnerships with the remarkable abilities that already lie within us.

Michael Brooks’s “The Secret Anarchy of Science” is published by Profile Books (£8.99)

There is now hope for a vaccine against age-related macular degeneration. Photograph: Getty Images

Michael Brooks holds a PhD in quantum physics. He writes a weekly science column for the New Statesman, and his most recent book is At the Edge of Uncertainty: 11 Discoveries Taking Science by Surprise.

This article first appeared in the 28 January 2013 issue of the New Statesman, After Chavez

Photo: Getty
Show Hide image

The science and technology committee debacle shows how we're failing women in tech

It would be funny if it wasn’t so depressing.

Five days after Theresa May announced, in her first Prime Minister’s Questions after the summer recess, that she was "particularly keen to address the stereotype about women in engineering", an all-male parliamentary science and technology committee was announced. You would laugh if it wasn’t all so depressing.

It was only later, after a fierce backlash against the selection, that Conservative MP Vicky Ford was also appointed to the committee. I don’t need to say that having only one female voice represents more than an oversight: it’s simply unacceptable. And as if to rub salt into the wound, at the time of writing, Ford has still not been added to the committee list on parliament's website.

To the credit of Norman Lamb, the Liberal Democrat MP who was elected chair of the committee in July, he said that he didn't "see how we can proceed without women". "It sends out a dreadful message at a time when we need to convince far more girls to pursue Stem [Science, Technology, Engineering and Mathematics] subjects," he added. But as many people have pointed out already, it’s the parties who nominate members, and that’s partly why this scenario is worrying. The nominations are a representation of those who represent us.

Government policy has so far completely failed to tap into the huge pool of talented women we have in this country – and there are still not enough women in parliament overall.

Women cannot be considered an afterthought, and in the case of the science and technology committee they have quite clearly been treated as such. While Ford will be a loud and clear voice on the committee, one person alone can’t address the major failings of government policy in improving conditions for women in science and technology.

Study after study has shown why it is essential for the UK economy that women participate in the labour force. And in Stem, where there is undeniably a strong anti-female bias and yet a high demand for people with specialist skills, it is even more pressing.

According to data from the Women’s Engineering Society, 16 per cent of UK Stem undergraduates are female. That statistic illustrates two things. First, that there is clearly a huge problem that begins early in the lives of British women, and that this leads to woefully low female representation on Stem university courses. Secondly, unless our society dramatically changes the way it thinks about women and Stem, and thereby encourages girls to pursue these subjects and careers, we have no hope of addressing the massive shortage in graduates with technical skills.

It’s quite ironic that the Commons science and technology committee recently published a report stating that the digital skills gap was costing the UK economy £63bn a year in lost GDP.

Read more: Why does the science and technology committee have no women – and a climate sceptic?

Female representation in Stem industries wasn’t addressed at all in the government’s Brexit position paper on science, nor was it dealt with in any real depth in the digital strategy paper released in April. In fact, in the 16-page Brexit position paper, the words "women", "female" and "diversity" did not appear once. And now, with the appointment of the nearly all-male committee, it isn't hard to see why.

Many social issues still affect women, not only in Stem industries but in the workplace more broadly. From the difficulties facing mothers returning to work after having children, to the systemic pay inequality that women face across most sectors, it is clear that there is still a vast amount of work to be done by this government.

The committee does not represent the scientific community in the UK, and is fundamentally lacking in the diversity of thought and experience necessary to effectively scrutinise government policy. It leads you to wonder which century we’re living in. Quite simply, this represents a total failure of democracy.

Pip Wilson is a tech entrepreneur, angel investor and CEO of amicable