R&D News: Neuroscientists develop an accurate model to predict function of fusiform gyrus cells

Fusiform gyrus are cells in a brain region, are face-selective.

David Osher, a lead author of the paper, said: "Rather than just mapping the brain, what we’re doing now is adding on to that a description of function with respect to connectivity."

Using this approach, scientists may be able to learn more about the face-recognition impairments often seen in autism and prosopagnosia, a disorder often caused by stroke. This method could also be used to determine relationships between structure and function in other parts of the brain.

To map the brain’s connectivity patterns, the researchers used a technique called diffusion-weighted imaging, which is based on MRI. A magnetic field applied to the brain of the person in the scanner causes water in the brain to flow in the same direction.

By applying the magnetic field in many different directions and observing which way the water flows, the researchers can identify the locations of axons and determine which brain regions they are connecting.

“For every measurable unit of the brain at this level, we have a description of how it connects with every other region, and with what strength it connects with every other region,” says Zeynep Saygin, a lead author of the paper, and Rebecca Saxe, senior author of the paper.

The researchers found that certain patches of the fusiform gyrus were strongly connected to brain regions also known to be involved in face recognition, including the superior and inferior temporal cortices. Those fusiform gyrus patches were also most active when the subjects were performing face-recognition tasks.

Based on the results in one group of subjects, the researchers created a model that predicts function in the fusiform gyrus based solely on the observed connectivity patterns. In a second group of subjects, they found that the model successfully predicted which patches of the fusiform gyrus would respond to faces.

The other regions connected to the fusiform gyrus are believed to be involved in higher-level visual processing. One surprise was that some parts of the fusiform gyrus connect to a part of the brain called the cerebellar cortex, which is not thought to be part of the traditional vision-processing pathway. That area has not been studied very thoroughly, but a few studies have suggested that it might have a role in face recognition, Mr Osher says.

Have your say and discuss with your peers on the InfoGrok community.