This is not a real picture of today's eclipse. Photo: A4size-ska / DeviantArt
Show Hide image

This is not a picture of today's eclipse

Don't trust everything you read.

A total eclipse was visible from the UK today, for the first time since 1999. (And the last until the next one, due in 2090.) Many, many people are currently tweeting the above picture, claiming it's a picture taken by astronauts on the International Space Station.

Even New Scientist tweeted it (though they've now deleted that), and ITV posted it as well (before also deleting the page from their site). This is because it is obviously not real. It's a 2009 illustration by a DeviantArt user called A4size-ska.

There are two things that give this away. The first is the sheer unreality of it - it looks like CGI, and the spheres of the Moon and Sun are significantly larger than they truly appear from the Earth (or near the Earth). The shadow this eclipse casts is also stretched out, rather than a neat circle.

Secondly, we know what an eclipse looks like from space. It looks like this:

Photo: CNES

That's a picture of the shadow cast by the Moon on the Earth during the 11 August 1999 solar eclipse. It was taken by the crew of the Mir space station, during one of its last few missions before it was decommissioned and allowed to burn up and fall back to Earth in 2001.

However, it's understandable that some people might have reached for something a bit spectacular, as the view of the eclipse this morning for much of us in the UK (including from the NS offices) was this:

PS: A further public service announcement is necessary, to make clear you should ignore anything Ukip MEP Roger Helmer claims about climate change and/or the Sun, today or any day:

The man's a fool.

Ian Steadman is a staff science and technology writer at the New Statesman. He is on Twitter as @iansteadman.

Getty
Show Hide image

Not just a one-quack mind: ducks are capable of abstract thought

Newborn ducklings can differentiate between objects that are the same and objects that are different, causing scientists to rethink the place of abstract thinking.

There’s a particular loftiness to abstract thought. British philosopher and leading Enlightenment thinker John Locke asserted that “brutes abstract not” – by which he meant anything which doesn’t fall under the supreme-all-mighty-greater-than-everything category of Homo sapiens was most probably unequipped to deal with the headiness and complexities of abstract thinking.

Intelligence parameters tail-ended by “bird-brained” or “Einstein” tend to place the ability to think in abstract ways at the Einstein end of the spectrum. However, in light of some recent research coming out of the University of Oxford, it seems that the cognitive abilities of our feathery counterparts have been underestimated.

In a study published in Science, led by Alex Kacelnik – a professor of behavioural psychology – a group of ducklings demonstrated the ability to think abstractly within hours of being hatched, distinguishing the concepts of “same” and “different” with success.

Young ducklings generally become accustomed to their mother’s features via a process called imprinting – a learning mechanism that helps them identify the individual traits of their mothers. Kacelnik said: “Adult female ducks look very similar to each other, so recognising one’s mother is very difficult. Ducklings see their mothers from different angles, distances, light conditions, etc, so their brains use every possible source of information to avoid errors, and abstracting some properties helps in this job.”

It’s this hypothesised abstracting of some properties that led Kacelnik to believe that there must be more going on with the ducklings beyond their imprinting of sensory inputs such as shapes, colours or sounds.

The ability to differentiate the same from the different has previously been used as means to reveal the brain’s capacity to deal with abstract properties, and has been shown in other birds and mammals, such as parrots, pigeons, bees and monkeys. For the most part, these animals were trained, given guidance on how to determine sameness and differences between objects.

What makes Kacelnik’s ducklings special then, as the research showed, was that they were given no training at all in learning the relations between objects which are the same and object which are different.

“Other animals can be trained to respond to abstract relations such as same or different, but not after a single exposure and without reinforcement,” said Kacelnik.

Along with his fellow researcher Antone Martinho III, Kacelnik hatched and domesticated mallard ducklings and then threw them straight into an experiment. The ducklings were presented pairs of objects – either identical or different in shape or colour – to see whether they could find links and relations between the pairs.

The initial pairs they were presented served as the imprinting ones; it would be the characteristics of these pairs which the ducklings would first learn. The initial pairs involved red cones and red cylinders which the ducklings were left to observe and assimilate into their minds for 25 minutes. They were then exposed to a range of different pairs of objects: red pyramid and red pyramid, red cylinder and red cube.

What Kacelnik and his research partner found was that the ducklings weren’t imprinting the individual features of the objects but the relations between them; it’s why of the 76 ducklings that were experimented with, 68 per cent tended to move towards the new pairs which were identical to the very first pairs they were exposed to.

Put simply, if they initially imprinted an identical pair of objects, they were more likely to favour a second pair of identical objects, but if they initially imprinted a pair of objects that were different, they would favour a second pair of differing objects similar to the first.

The results from the experiment seem to highlight a misunderstanding of the advanced nature of this type of conceptual thought process. As science journalist Ed Yong suggests, there could be, “different levels of abstract concepts, from simple ones that young birds can quickly learn after limited experience, to complex ones that adult birds can cope with”.

Though the research doesn’t in any way assume or point towards intelligence in ducklings to rival that of humans, it seems that the growth in scientific literature on the topic continues to refute the notions that human being as somehow superior. Kacelnik told me: “The last few decades of comparative cognition research have destroyed many claims about human uniqueness and this trend is likely to continue.”