A lion tries to catch a box at the Santa Fe zoo in Medellin, Antioquia department, Colombia on January 10, 2015. Photo: Getty Images
Show Hide image

Who would win in a fight, a trillion lions or the Sun?

A trillion lions fired into space could make Mars into an oasis, plus other things you can do with a giant ball of cats.

Sometimes, it's possible to take a joke too far. This tweet has inspired just such an occasion:

The answer to this question is: the Sun. But! There are other things we can do with a trillion lions.

First, we need to work out exactly how much lion we'll have if we have a trillion lions. This paper found that the average adult male Panthera leo living in Kruger National Park in South Africa weighs 187.5kg, and so a trillion lions means we're talking about a sphere of lions with a total mass of 1.875 x 1014kg. To put it into context, that's about 20 times more massive than comet 67-P (which the Rosetta probe and Philae lander have been studying since late last year) - but it's nothing on the mass of the Sun: 1.98892 x 1030kg.

You might think that lions have advantages over the Sun (claws, for example) that level the playing field. It's not enough. A comet-sized object consisting of lions held together by gravity and floating in towards the Sun to attack it will not destroy it - the Sun will destroy them. The Sun is a trillion times more massive than the spacelionball. It's sad, but true.

But if we're going to go to the trouble of launching that number of lions into space, we should, I would argue, use them for something more productive. 

Working out the size of the spherical spacelionball isn't that difficult if we assume each lion ends up as its own little sphere of meat (and considering the effects of the vacuum of space on otherwise-unprotected lions, yeah, they'll be meat soon enough). We know the mass of each individual lion sphere, but we also need to know its likely volume if we're to explore the consequences of a spacelionball - and, funnily enough, a search through the scientific literature comes up empty-handed for studies where scientists have gone to the effort of dunking lions in water and measuring how much water was displaced.

However, there's one group of people who do need to know how dense meat is: farmers. This company makes buckets for agricultural elevators, and provides a handy engineering sheet with the average densities of the kinds of things farmers tend to stick in buckets. Their value for the density of "meat, scrap with bone" is 40 pounds per cubic foot, or 640.7kg per cubic metre - and again, bearing in mind what the radiation and cold of space does to exposed flesh, "meat, scrap with bone" is probably close to the final product.

And, assuming meat's similar enough from species to species that this density value doesn't change much, that means our meaty lion spheres are going to take up 0.29m3 each. Think of it this way: you'd need to put two lions through a wood chipper to fill up a typical bathtub. (Note: don't do that.)

That's all very grim, but it does mean that our spacelionball will be a sphere with a rather neat volume of 290km3 and a diameter of just over 8km. Its circumference is roughly 26km, which isn't too far off the length of the main loop of the Large Hadron Collider, and an astronaut standing on the surface would experience gravity that felt about a twentieth as strong as Earth's. Like other objects of a similar size, our spacelionball will be very loosely held together, and the escape velocity is extremely low - anything moving faster than the speed at which grass grows will be ejected into space. As meat in the interior decompose, the release of trapped gasses will mean some lions get gently pushed out into space.

The spacelionball's closest relative in the Solar System in size and mass is probably Jupiter's small, strange moon Themisto, about which we know very little, beyond the fact that it orbits apart from the other groups that Jupiter's moons tend to clump into. Astronomers found it in 1975, then lost it, then rediscovered it in 2000; we still don't have any photos of it, so it's fair to say that we can't definitively rule out the possibility that it is, in fact, composed of a trillion lions bound together by gravity. It probably isn't, but we can't be sure it isn't.

Leaving our spacelionball to coalesce and cool and congeal, to hang in the heavens without purpose, would be a waste. Like humans, lions are mostly water, and our ghastly cosmic creation would be be roughly two-thirds H2O, an amount the corresponds to about 254 times the daily discharge of the Nile - and if we crash our spacelionballcometthing into something we might, after the dust settles, be able to make use of it.

One of the more ambitious suggestions for making Mars habitable to Earth life is to commandeer and crash comets into it, thereby: a) thickening its thin atmosphere with necessary gases like oxygen, carbon dioxide and nitrogen, and b) warming up the polar regions, where more than enough water ice is currently stored that, once melted, would create oceans and river just like ours. Our spacelionball is far too small for this - we'd need several hundred of them at least, if not more - but we could try something else.

Without getting into too much detail (though it's here if you want it), Mars is short about 1019kg of atmosphere, and in the Kuiper belt contains a bunch of huge asteroids which weigh in at about that mass - and, crucially, they're rich in compounds like methane and ammonia, which we'll need to make Mars fertile. The force required to move one of these objects out of its orbit and in towards the Sun, and into a collision course with Mars, is huge, on the scale of dozens of nuclear warheads. But an easy way to halve your energy costs is to simply find a smaller asteroid travelling retrograde (ie, backwards relative to most other objects) around the Sun, and maneouvre that into colliding with the larger thing you're really hunting.

The resulting impact, as the combined lion-and-Kuiper object reached its target, would very rapidly reshape the Red Planet into something more similar to Earth, once the hydrological cycle settles in and the atmosphere is rebuilt to a surface pressure comparable to Earth's. There would be side effects, true, including the violent ejection of rocks and debris from the impact site back into space, and likely towards Earth - we have many meteors that we know used to be part of Mars, delivered to us by similar ancient collision events. Only for this one, some lions might make it home on the return journey.

In this way, the sacrifice of so many kings of the jungle may not be in vain.

With apologies to Randall Munroe.

Ian Steadman is a staff science and technology writer at the New Statesman. He is on Twitter as @iansteadman.

Getty Images/ Staff
Show Hide image

The answer to the antibiotics crisis might be inside your nose

The medical weapons we have equipped ourselves with are losing their power. But scientists scent an answer. 

They say there’s a hero in everyone. It turns out that actually, it resides within only about ten percent of us. Staphylococcus lugdunensis may be the species of bacteria that we arguably don’t deserve, but it is the one that we need.

Recently, experts have cautioned that we may be on the cusp of a post-antibiotic era. In fact, less than a month ago, the US Centres for Disease Control and Prevention released a report on a woman who died from a "pan-resistant" disease – one that survived the use of all available antibiotics. Back in 1945, the discoverer of penicillin, Alexander Fleming, warned during his Nobel Prize acceptance speech against the misuse of antibiotics. More recently, Britain's Chief Medical Officer Professor Dame Sally Davies has referred to anti-microbial resistance as “the greatest future threat to our civilisation”.

However, hope has appeared in the form of "lugdunin", a compound secreted by a species of bacteria found in a rather unlikely location – the human nose.

Governments and health campaigners alike may be assisted by a discovery by researchers at the University of Tubingen in Germany. According to a study published in Nature, the researchers had been studying Staphylococcus aureus. This is the bacteria which is responsible for so-called "superbug": MRSA. A strain of MRSA bacteria is not particularly virulent, but crucially, it is not susceptible to common antibiotics. This means that MRSA spreads quickly from crowded locations where residents have weaker immune systems, such as hospitals, before becoming endemic in the wider local community. In the UK, MRSA is a factor in hundreds of deaths a year. 

The researchers in question were investigating why S. aureus is not present in the noses of some people. They discovered that another bacteria, S. lugdunensis, was especially effective at wiping out its opposition, even MRSA. The researchers named the compound created and released by the S. lugdunensis "lugdunin".

In the animal testing stage, the researchers observed that the presence of lugdunin was successful in radically reducing and sometimes purging the infection. The researchers subsequently collected nasal swabs from 187 hospital patients, and found S. aureus on roughly a third of the swabs, and S. lugdunensis on up to 10 per cent of them. In accordance with previous results, samples that contained both species saw an 80 per cent decrease of the S. aureus population, in comparison to those without lugdunin.

Most notably, the in vitro (laboratory) testing phase provided evidence that the new discovery is also useful in eliminating other kinds of superbugs, none of which seemed to develop resistance to the new compound. The authors of the study hypothesised that lugdunin had evolved  “for the purpose of bacterial elimination in the human organism, implying that it is optimised for efficacy and tolerance at its physiological site of action". How it works, though, is not fully understood. 

The discovery of lugdunin as a potential new treatment is a breakthrough on its own. But that is not the end of the story. It holds implications for “a new concept of finding antibiotics”, according to Andreas Peschel, one of the bacteriologists behind the discovery.

The development of antibiotics has drastically slowed in recent years. In the last 50 years, only two new classes of this category of medication have been released to the market. This is due to the fact almost all antibiotics in use are derived from soil bacteria. By contrast, the new findings record the first occurrence of a strain of bacteria that exists within human bodies. Some researchers now suggest that the more hostile the environment to bacterial growth, the more likely it may be for novel antibiotics to be found. This could open up a new list of potential areas in which antibiotic research may be carried out.

When it comes to beating MRSA, there is hope that lugdunin will be our next great weapon. Peschel and his fellow collaborators are in talks with various companies about developing a medical treatment that uses lugdunin.

Meanwhile, in September 2016, the United Nations committed itself to opposing the spread of antibiotic resistance. Of the many points to which the UN signatories have agreed, possibly the most significant is their commitment to “encourage innovative ways to develop new antibiotics”. 

The initiative has the scope to achieve a lot, or dissolve into box ticking exercise. The discovery of lugdunin may well be the spark that drives it forward. Nothing to sniff about that. 

Anjuli R. K. Shere is a 2016/17 Wellcome Scholar and science intern at the New Statesman