Phelsuma ornata - journal.pbio.1001382. Photo: Luke J. Harmon - Harmon LJ (2012) An Inordinate Fondness for Eukaryotic Diversity. PLoS Biol 10(8): e1001382. doi:10.1371/journal.pbio.1001382. Licensed under CC-Attribution 2.5 via Wikimedia Commons
Show Hide image

Why, exactly, has Russia organised a gecko orgy in space?

Russian scientists hoping to observe geckos mating in orbit are engaged in serious research, as ridiculous as it might sound.

Over the last few days a peculiar drama has played out in the sky above our heads. It's been hard to miss - headlines like "Russia loses control of gecko sex experiment satellite" are compelling, to say the least - but there is a scientific reason for sending one male and four female lizards up into orbit with nothing to do but eat and have sex.

The satellite - Photon-M4 - launched on 19 July from the Baikonur Cosmodrome in Kasakhstan, which was the USSR's primary launch location for its space missions and continues to be Russia's key spaceport. It made a few orbits of the Earth before those on the ground lost communication with it, and it began to orbit uncontrollably. To avoid falling back through the atmosphere it needed to begin moving up into a higher orbit, but while ground crews could receive data from it, it was ignoring commands.

For a while, it looked like it might have been curtains for the satellite's passengers: fruit flies, plants, seeds, microbe cultures and the infamous geckos. They'd still have access to food, water and light, but without human control, the satellite might spiral down to Earth prematurely, killing all on board. The geckos (which in this case are Phelsuma ornata, the Mauritius ornate day gecko) were meant to make it home alive after a two month journey.

Thankfully, over the weekend the Russian space agency Roscosmos announced that it had managed to take control of Photon-M4 again, getting things back on track. In this context, that means watching every move the geckos made with video cameras set up all around their habitat - the objective of the mission being to "create the conditions for sexual behavior, copulation and breeding geckos", and then, to study what happens to the fertilised eggs that the female geckos lay post-mating. Those eggs will be analysed when the satellite returns to Earth to see how, if anything, they differ to those of normal gecko eggs.

For terrestrial animals (be they human or lizard) space travel causes stresses that evolution never could have prepared us for. Physically, weightlessness requires learning entirely new ways to move, eat and sleep, or even wash one's hair or cry. Things that in an environment with even a reasonably fraction of Earth's gravity, like a small leak in a spacesuit, can become terrifying ordeals - as Italian astronaut Luca Parmitano, who last year nearly drowned while on a spacewalk outside the International Space Station, discovered. The surface tension of water droplets made them cling to his face, his nose, his ears and his eyes, blocking his vision, sight and hearing.

In an environment where liquids behave in unexpected ways, gecko sex might give us clues as to what to expect if and when humans begin living in zero-G (or near-zero-G) environments for a long time. While the record for first humans to have sex in space is still unclaimed (as far as we know), something - weightlessness, radiation, the distribution of fluids throughout the body, something else - could impact the health of sperm, eggs or a developing embryo. Scientists from Russia's Institute of Medical and Biological Problems will be able to study all kinds of factors that might have influenced the gecko breeding process: metabolic changes in the geckos, structural changes within the eggs, skeletal changes (humans on the ISS lose bone density and muscle mass relatively quickly, even when working out regularly) or behavioural changes.

The other experiments on Photon-M4 similarly explore the effects of exposure to a zero-G, Earth orbit environment on different organisms. Some microbes will be analysed with flourescent light to see how their ability to divide changes during flight, while others (sourced from permafrost, so extremely hardy) will be placed on asteroid-like materials to see if they can also survive being exposed to space. Fungal spores will be observed to see how they grow during flight, while others will be watched to see how they decompose in zero-G.

Seeds and silkworm eggs will be bombarded with cosmic radiation to see what happens, and whether they then develop as normal. One of the discoveries that scientists can thank the ISS for is that it's possible to grow plants in orbit, and to complete full lifecycles from seed to plant and back to seed - but weird things can happen to the plants that are then grown from those space-born seeds. A cherry blossom tree seed came back to Earth from eight months aboard the ISS in 2009, and scientists were surprised that the sapling which grew from it sprouted flowers earlier in 2014 - a full six years earlier than such trees normally develop flowers. Its petals were also different to a normal cherry blossom tree's. Something happened to it up in space, it seems, but research like that on Photon-M4 is needed to figure out exactly what.

When missions to Mars do get underway (and on current estimates we're probably 15 to 20 years from that moment), crews are likely to take plants with them to grow for food. They may even plant them on Mars, within glass domes or greenhouses constructed by the first settlers. There may even be small animals too - insects perhaps - and it's vital that we know what will happen not only to humans during the eight-month journey to the Red Planet but what will happen to their food sources. If seeds are rendered sterile by cosmic radiation, any settlement of Mars is likely to be a short one.

Each major space agency has spent time on experiments like the ones on Photon-M. Indeed, Roscosmos' Bion-M satellite, launched in late 2013, held very similar projects to Photon-M4 - only instead of five geckos, there were 45 mice, 15 newts and eight gerbils. The plan was to observe them in orbit for 30 days, with data gathering focused on what might prove useful for keeping human astronauts healthy during any future Mars mission.

Distressingly, most of the animals died under the stress of either weightlessness or failure in the equipment that should have automatically fed them and kept them at a comfortable temperature. Institute of Medical and Biological Problems deputy director Vladimir Sychov memorably said: "Less than half of the mice made it - but that was to be expected. Unfortunately, because of equipment failure, we lost all the gerbils."

Ian Steadman is a staff science and technology writer at the New Statesman. He is on Twitter as @iansteadman.

Getty
Show Hide image

An antibiotic-resistant superbug is silently spreading through UK hospitals

There have already been outbreaks in Manchester, London, Edinburgh, and Birmingham, but deaths are not centrally recorded. 

Lying in a hospital bed, four months pregnant, Emily Morris felt only terror. She had caught a urinary tract infection and it was resistant to common antibiotics. Doctors needed to treat it as it could harm the baby, but the only drugs that could work hadn’t been tested on pregnant women before; the risks were unknown. Overwhelmed, Emily and her husband were asked to make a decision. A few hours later, gripping each other’s arms, they decided she should be given the drugs.

In Emily’s case, the medicine worked and her son Emerson (pictured below with Emily) was born healthy. But rising antibiotic resistance means people are now suffering infections for which there is no cure. Doctors have long warned that decades of reliance on these drugs will lead to a "post-antibiotic era"– a return to time where a scratch could kill and common operations are too risky.

It sounds like hyperbole – but this is already a reality in the UK. In the last four years 25 patients have suffered infections immune to all the antibiotics Public Health England tests for in its central lab, the Bureau of Investigative Journalism has discovered.

While these cases are rare, reports of a highly resistant superbug are rising, and infection control doctors are worried. Carbapenem resistant enterobacteriaceae (CRE) are not only difficult to pronounce, but deadly. These are bugs that live in the human gut but can cause an infection if they get into the wrong place, like the urinary tract or a wound. They have evolved to become immune to most classes of antibiotics – so if someone does become infected, there are only a few drugs that will still work. If CRE bacteria get into the bloodstream, studies show between 40 per cent and 50 per cent of people die.

These bugs are causing huge problems in India, certain parts of Asia, the Middle East and some countries in southern Europe. Until recently, most infections were seen in people who had travelled abroad, had family members who had, or had been in a foreign hospital. The boom in cheap cosmetic surgery in India was blamed for a spate of infections in Britain.

Now, doctors are finding people who have never boarded a plane are carrying the bug. There have already been outbreaks in Manchester, London, Liverpool, Leeds, Edinburgh, Birmingham, Nottingham, Belfast, Dublin and Limerick among other areas. Patients found with CRE have to be treated in side rooms in hospital so the bacteria does not spread and harm other vulnerable patients. But in many of Britain’s Victorian-built hospitals, single rooms are in sparse supply. Deaths from CRE aren’t centrally recorded by the government - but it is thought hundreds have already died. 

Across the country, doctors are being forced to reach for older, more toxic drugs to treat these infections. The amount of colistin – called the "last hope" antibiotic as it is one of few options still effective against CRE infections - rose dramatically in English hospitals between 2014 and 2015, the Bureau has revealed. Colistin was taken off the shelves soon after it was introduced, as it can harm the kidneys and nervous system in high doses, but was reintroduced when infections became immune to standard treatment. The more we use colistin the more bacteria develop resistance to it. It’s only a matter of time before it stops working too, leaving doctors’ arsenal near-empty when it comes to the most dangerous superbug infections.

Due to a kidney problem, Emily Morris suffers repeat urinary tract infections and has to be hospitalised most months. Her son Emerson comes to visit her, understanding his mummy is ill. If she catches a superbug infection, she can still be given intravenous antibiotics to stem it. But she worries about her son. By the time he is an adult, if he gets ill, there may be no drugs left that work.

Madlen Davies is a health and science reporter for the Bureau of Investigative Journalism