Show Hide image

Here comes the sun

A giant nuclear fusion reactor could solve the world’s energy problems – but only if it doesn’t melt

For now, it is a hideous sight. In Cadarache, 60 kilometres north of Marseilles, workers have cleared over 40 hectares of wooded land and moved more than two million cubic metres of soil. However, this scar on the Provençal landscape has been earmarked for greatness. It is where a multinational team of scientists is attempting to build earth's second sun.

As projects go, the International Thermonuclear Experimental Reactor (Iter) could hardly be more ambitious. Its aim is to show that we can control nuclear fusion reactions. This is the same process as generates energy in stars and could, in theory, release up to four million times more power than burning fossil fuels. If Iter works, we'll have solved our energy problems.

But ifs do not come much bigger than that. We do not yet know if it is even possible to build the machine. "Fusion is a big bet - it's not a dead cert," says Steven Cowley, director of the Culham Centre for Fusion Energy, the hub of UK fusion research. The stake for that bet is set at €10bn (£9bn), but that figure is double the original estimate for the project and may rise further; Iter's council was recently presented with just the latest in a series of revised budgets and schedules. Whatever it eventually costs, we will not find out whether the gamble has paid off until 2026, the earliest date for the project's completion.

All this uncertainty and delayed gratification, not helped by the price tag, has generated heat of its own. Iter's critics, who include prominent scientists and Greenpeace International, have argued that the money would be better spent on pressing challenges such as finding ways to increase near-term energy production.

However, the fusion scientists are keen to point out that they are being responsible. It is no use surviving the near term only to find we are faced with a huge energy debt, they argue. World consumption is on course almost to double by 2030. Solar energy and nuclear fission might be more immediately available, but both have their limits. Nuclear fusion's main fuel is derived from seawater, and there are no long-term nuclear waste products. Nothing, they say, would fill the energy gap like this.

Bombard with microwaves

That is what Iter's members - Russia, the EU, Japan, China, South Korea, the US and India - are hoping their 23,000-tonne monster will prove. The jaw-dropping size of Iter is necessary because making commercially viable electricity from fusion depends on economies of scale. Previous successes in smaller reactors have managed to break even, producing as much energy as they consume. But the Cadarache reactor should, according to its designers, give out ten times more power than it takes in.

Operating at 150 million degrees Celsius, ten times hotter than the core of the sun, Iter is certainly going to take in a lot of power. Surprisingly, this kind of temperature is not too hard to achieve. The fuel for Iter is two heavy isotopes of hydrogen called deuterium and tritium. Bombard them with microwaves, magnetic fields and other particles, and they will get hot enough to fuse, releasing energy.

The hard bit comes with the maelstrom created inside the reactor. The high temperature creates a "plasma", a gas of charged particles. Plasma is an engineer's worst nightmare. For a start, it cannot be allowed to touch the reactor's walls; if it does, they will melt, and the whole thing will have to be rebuilt.

The plasma can be held away from the walls using immensely strong magnetic fields, but only - so far - for short periods. This is because the plasma tends to slip around in its magnetic cage, forming areas of high density that can burst through. Even if Iter engineers manage to hold it stable for ten minutes at a time, which is as much as they hope to achieve, the plasma will still shoot out neutrons that can destroy the walls.

This is the frontier where Iter succeeds or fails, Cowley believes. "We're pretty sure we can get out ten times the energy we put in," he says. "But if we have to replace the wall every year, that's going to be a very expensive way to produce electricity."

Once all the engineering problems are overcome, the plant will be able to produce only 500 megawatts of power, equivalent to a single coal-fired power station. Members will then have to build their own fusion reactors using the know-how gained at Iter. Payback will come, so the rationale goes, through these states' privileged position in the trillion-dollar, post-fossil-fuel, global energy market.

It's not an argument that worked for Canada, which pulled out of the fusion dream in 2003. The US also wavered, though it has now committed to paying 9 per cent of the cost. The EU is putting in the largest share, taking responsibility for just under half of the project. Thanks to the strange arithmetic of fusion, however, EU taxpayers may end up paying significantly more than half of the money.

Creative accounting

The funding of Iter is a notoriously slippery subject. Roughly 90 per cent of the contributions are due "in kind" - states will contract firms to manufacture equipment for a cost that they do not have to declare to the other states. Even more confusing is that each of Iter's components has been designated as worth a certain number of "Iter accounting units". Members can then choose which components they commission firms in their countries to design and build. This will affect the balance of expenditure; the cost of producing a particular magnet is likely to be far less in China than in Germany, for instance.

Then there is the complexity of the various components. The UK has chosen to build superconducting magnets and the main container vessel for the plasma. These, it turns out, will cost much more to design and build than initial estimates suggested. Cowley maintains this is a good thing: the money will go to UK in­dustries and provide them with engineering challenges that will have their own spin-off benefits, he says.

“We will never really know how much some countries spent," admits Neil Calder, Iter's spokesman. This lack of clarity about the cost may prove to be the project's Achilles heel.

In May, the journal Nature declared it "deeply unfair" to the taxpayers paying for the project and called for "an honest public debate". Science also weighed in, suggesting that fusion's problems could well be intractable. Fusion, said one commentator in the journal, is "the science of wishful thinking".

There is no sign of second thoughts from any of the members, however. According to Sébas­tien Balibar, a director at France's National Centre for Scientific Research, members stand to gain nothing by halting the project. "Now that Iter has been decided and is under construction, it would be better that it produces useful results," he says.

Michael Brooks is a consultant for New Scientist and the author of "13 Things that Don't Make Sense: the Most Intriguing Scientific Mysteries of Our Time" (Profile Books, £12.99)

 

Follow the New Statesman team on Twitter

Michael Brooks holds a PhD in quantum physics. He writes a weekly science column for the New Statesman, and his most recent book is At the Edge of Uncertainty: 11 Discoveries Taking Science by Surprise.

This article first appeared in the 30 November 2009 issue of the New Statesman, Left Hanging

JOHN DEVOLLE/GETTY IMAGES
Show Hide image

Fitter, dumber, more productive

How the craze for Apple Watches, Fitbits and other wearable tech devices revives the old and discredited science of behaviourism.

When Tim Cook unveiled the latest operating system for the Apple Watch in June, he described the product in a remarkable way. This is no longer just a wrist-mounted gadget for checking your email and social media notifications; it is now “the ultimate device for a healthy life”.

With the watch’s fitness-tracking and heart rate-sensor features to the fore, Cook explained how its Activity and Workout apps have been retooled to provide greater “motivation”. A new Breathe app encourages the user to take time out during the day for deep breathing sessions. Oh yes, this watch has an app that notifies you when it’s time to breathe. The paradox is that if you have zero motivation and don’t know when to breathe in the first place, you probably won’t survive long enough to buy an Apple Watch.

The watch and its marketing are emblematic of how the tech trend is moving beyond mere fitness tracking into what might one call quality-of-life tracking and algorithmic hacking of the quality of consciousness. A couple of years ago I road-tested a brainwave-sensing headband, called the Muse, which promises to help you quiet your mind and achieve “focus” by concentrating on your breathing as it provides aural feedback over earphones, in the form of the sound of wind at a beach. I found it turned me, for a while, into a kind of placid zombie with no useful “focus” at all.

A newer product even aims to hack sleep – that productivity wasteland, which, according to the art historian and essayist Jonathan Crary’s book 24/7: Late Capitalism and the Ends of Sleep, is an affront to the foundations of capitalism. So buy an “intelligent sleep mask” called the Neuroon to analyse the quality of your sleep at night and help you perform more productively come morning. “Knowledge is power!” it promises. “Sleep analytics gathers your body’s sleep data and uses it to help you sleep smarter!” (But isn’t one of the great things about sleep that, while you’re asleep, you are perfectly stupid?)

The Neuroon will also help you enjoy technologically assisted “power naps” during the day to combat “lack of energy”, “fatigue”, “mental exhaustion” and “insomnia”. When it comes to quality of sleep, of course, numerous studies suggest that late-night smartphone use is very bad, but if you can’t stop yourself using your phone, at least you can now connect it to a sleep-enhancing gadget.

So comes a brand new wave of devices that encourage users to outsource not only their basic bodily functions but – as with the Apple Watch’s emphasis on providing “motivation” – their very willpower.  These are thrillingly innovative technologies and yet, in the way they encourage us to think about ourselves, they implicitly revive an old and discarded school of ­thinking in psychology. Are we all neo-­behaviourists now?

***

The school of behaviourism arose in the early 20th century out of a virtuous scientific caution. Experimenters wished to avoid anthropomorphising animals such as rats and pigeons by attributing to them mental capacities for belief, reasoning, and so forth. This kind of description seemed woolly and impossible to verify.

The behaviourists discovered that the actions of laboratory animals could, in effect, be predicted and guided by careful “conditioning”, involving stimulus and reinforcement. They then applied Ockham’s razor: there was no reason, they argued, to believe in elaborate mental equipment in a small mammal or bird; at bottom, all behaviour was just a response to external stimulus. The idea that a rat had a complex mentality was an unnecessary hypothesis and so could be discarded. The psychologist John B Watson declared in 1913 that behaviour, and behaviour alone, should be the whole subject matter of psychology: to project “psychical” attributes on to animals, he and his followers thought, was not permissible.

The problem with Ockham’s razor, though, is that sometimes it is difficult to know when to stop cutting. And so more radical behaviourists sought to apply the same lesson to human beings. What you and I think of as thinking was, for radical behaviourists such as the Yale psychologist Clark L Hull, just another pattern of conditioned reflexes. A human being was merely a more complex knot of stimulus responses than a pigeon. Once perfected, some scientists believed, behaviourist science would supply a reliable method to “predict and control” the behaviour of human beings, and thus all social problems would be overcome.

It was a kind of optimistic, progressive version of Nineteen Eighty-Four. But it fell sharply from favour after the 1960s, and the subsequent “cognitive revolution” in psychology emphasised the causal role of conscious thinking. What became cognitive behavioural therapy, for instance, owed its impressive clinical success to focusing on a person’s cognition – the thoughts and the beliefs that radical behaviourism treated as mythical. As CBT’s name suggests, however, it mixes cognitive strategies (analyse one’s thoughts in order to break destructive patterns) with behavioural techniques (act a certain way so as to affect one’s feelings). And the deliberate conditioning of behaviour is still a valuable technique outside the therapy room.

The effective “behavioural modification programme” first publicised by Weight Watchers in the 1970s is based on reinforcement and support techniques suggested by the behaviourist school. Recent research suggests that clever conditioning – associating the taking of a medicine with a certain smell – can boost the body’s immune response later when a patient detects the smell, even without a dose of medicine.

Radical behaviourism that denies a subject’s consciousness and agency, however, is now completely dead as a science. Yet it is being smuggled back into the mainstream by the latest life-enhancing gadgets from Silicon Valley. The difference is that, now, we are encouraged to outsource the “prediction and control” of our own behaviour not to a benign team of psychological experts, but to algorithms.

It begins with measurement and analysis of bodily data using wearable instruments such as Fitbit wristbands, the first wave of which came under the rubric of the “quantified self”. (The Victorian polymath and founder of eugenics, Francis Galton, asked: “When shall we have anthropometric laboratories, where a man may, when he pleases, get himself and his children weighed, measured, and rightly photographed, and have their bodily faculties tested by the best methods known to modern science?” He has his answer: one may now wear such laboratories about one’s person.) But simply recording and hoarding data is of limited use. To adapt what Marx said about philosophers: the sensors only interpret the body, in various ways; the point is to change it.

And the new technology offers to help with precisely that, offering such externally applied “motivation” as the Apple Watch. So the reasoning, striving mind is vacated (perhaps with the help of a mindfulness app) and usurped by a cybernetic system to optimise the organism’s functioning. Electronic stimulus produces a physiological response, as in the behaviourist laboratory. The human being herself just needs to get out of the way. The customer of such devices is merely an opaquely functioning machine to be tinkered with. The desired outputs can be invoked by the correct inputs from a technological prosthesis. Our physical behaviour and even our moods are manipulated by algorithmic number-crunching in corporate data farms, and, as a result, we may dream of becoming fitter, happier and more productive.

***

 

The broad current of behaviourism was not homogeneous in its theories, and nor are its modern technological avatars. The physiologist Ivan Pavlov induced dogs to salivate at the sound of a bell, which they had learned to associate with food. Here, stimulus (the bell) produces an involuntary response (salivation). This is called “classical conditioning”, and it is advertised as the scientific mechanism behind a new device called the Pavlok, a wristband that delivers mild electric shocks to the user in order, so it promises, to help break bad habits such as overeating or smoking.

The explicit behaviourist-revival sell here is interesting, though it is arguably predicated on the wrong kind of conditioning. In classical conditioning, the stimulus evokes the response; but the Pavlok’s painful electric shock is a stimulus that comes after a (voluntary) action. This is what the psychologist who became the best-known behaviourist theoretician, B F Skinner, called “operant conditioning”.

By associating certain actions with positive or negative reinforcement, an animal is led to change its behaviour. The user of a Pavlok treats herself, too, just like an animal, helplessly suffering the gadget’s painful negative reinforcement. “Pavlok associates a mild zap with your bad habit,” its marketing material promises, “training your brain to stop liking the habit.” The use of the word “brain” instead of “mind” here is revealing. The Pavlok user is encouraged to bypass her reflective faculties and perform pain-led conditioning directly on her grey matter, in order to get from it the behaviour that she prefers. And so modern behaviourist technologies act as though the cognitive revolution in psychology never happened, encouraging us to believe that thinking just gets in the way.

Technologically assisted attempts to defeat weakness of will or concentration are not new. In 1925 the inventor Hugo Gernsback announced, in the pages of his magazine Science and Invention, an invention called the Isolator. It was a metal, full-face hood, somewhat like a diving helmet, connected by a rubber hose to an oxygen tank. The Isolator, too, was designed to defeat distractions and assist mental focus.

The problem with modern life, Gernsback wrote, was that the ringing of a telephone or a doorbell “is sufficient, in nearly all cases, to stop the flow of thoughts”. Inside the Isolator, however, sounds are muffled, and the small eyeholes prevent you from seeing anything except what is directly in front of you. Gernsback provided a salutary photograph of himself wearing the Isolator while sitting at his desk, looking like one of the Cybermen from Doctor Who. “The author at work in his private study aided by the Isolator,” the caption reads. “Outside noises being eliminated, the worker can concentrate with ease upon the subject at hand.”

Modern anti-distraction tools such as computer software that disables your internet connection, or word processors that imitate an old-fashioned DOS screen, with nothing but green text on a black background, as well as the brain-measuring Muse headband – these are just the latest versions of what seems an age-old desire for technologically imposed calm. But what do we lose if we come to rely on such gadgets, unable to impose calm on ourselves? What do we become when we need machines to motivate us?

***

It was B F Skinner who supplied what became the paradigmatic image of ­behaviourist science with his “Skinner Box”, formally known as an “operant conditioning chamber”. Skinner Boxes come in different flavours but a classic example is a box with an electrified floor and two levers. A rat is trapped in the box and must press the correct lever when a certain light comes on. If the rat gets it right, food is delivered. If the rat presses the wrong lever, it receives a painful electric shock through the booby-trapped floor. The rat soon learns to press the right lever all the time. But if the levers’ functions are changed unpredictably by the experimenters, the rat becomes confused, withdrawn and depressed.

Skinner Boxes have been used with success not only on rats but on birds and primates, too. So what, after all, are we doing if we sign up to technologically enhanced self-improvement through gadgets and apps? As we manipulate our screens for ­reassurance and encouragement, or wince at a painful failure to be better today than we were yesterday, we are treating ourselves similarly as objects to be improved through operant conditioning. We are climbing willingly into a virtual Skinner Box.

As Carl Cederström and André Spicer point out in their book The Wellness Syndrome, published last year: “Surrendering to an authoritarian agency, which is not just telling you what to do, but also handing out rewards and punishments to shape your behaviour more effectively, seems like undermining your own agency and autonomy.” What’s worse is that, increasingly, we will have no choice in the matter anyway. Gernsback’s Isolator was explicitly designed to improve the concentration of the “worker”, and so are its digital-age descendants. Corporate employee “wellness” programmes increasingly encourage or even mandate the use of fitness trackers and other behavioural gadgets in order to ensure an ideally efficient and compliant workforce.

There are many political reasons to resist the pitiless transfer of responsibility for well-being on to the individual in this way. And, in such cases, it is important to point out that the new idea is a repackaging of a controversial old idea, because that challenges its proponents to defend it explicitly. The Apple Watch and its cousins promise an utterly novel form of technologically enhanced self-mastery. But it is also merely the latest way in which modernity invites us to perform operant conditioning on ourselves, to cleanse away anxiety and dissatisfaction and become more streamlined citizen-consumers. Perhaps we will decide, after all, that tech-powered behaviourism is good. But we should know what we are arguing about. The rethinking should take place out in the open.

In 1987, three years before he died, B F Skinner published a scholarly paper entitled Whatever Happened to Psychology as the Science of Behaviour?, reiterating his now-unfashionable arguments against psychological talk about states of mind. For him, the “prediction and control” of behaviour was not merely a theoretical preference; it was a necessity for global social justice. “To feed the hungry and clothe the naked are ­remedial acts,” he wrote. “We can easily see what is wrong and what needs to be done. It is much harder to see and do something about the fact that world agriculture must feed and clothe billions of people, most of them yet unborn. It is not enough to advise people how to behave in ways that will make a future possible; they must be given effective reasons for behaving in those ways, and that means effective contingencies of reinforcement now.” In other words, mere arguments won’t equip the world to support an increasing population; strategies of behavioural control must be designed for the good of all.

Arguably, this authoritarian strand of behaviourist thinking is what morphed into the subtly reinforcing “choice architecture” of nudge politics, which seeks gently to compel citizens to do the right thing (eat healthy foods, sign up for pension plans) by altering the ways in which such alternatives are presented.

By contrast, the Apple Watch, the Pavlok and their ilk revive a behaviourism evacuated of all social concern and designed solely to optimise the individual customer. By ­using such devices, we voluntarily offer ourselves up to a denial of our voluntary selves, becoming atomised lab rats, to be manipulated electronically through the corporate cloud. It is perhaps no surprise that when the founder of American behaviourism, John B Watson, left academia in 1920, he went into a field that would come to profit very handsomely indeed from his skills of manipulation – advertising. Today’s neo-behaviourist technologies promise to usher in a world that is one giant Skinner Box in its own right: a world where thinking just gets in the way, and we all mechanically press levers for food pellets.

This article first appeared in the 18 August 2016 issue of the New Statesman, Corbyn’s revenge