New housing strategy misses a trick

Government intervention has made it more likely that we are on course for another lost decade in Bri

The three main planks of the government's new Housing Strategy represent a bonanza for Britain's big builders. The "Build Now, Pay Later" scheme, releasing plots held by statutory bodies like the MoD and NHS, will give them public land. The £400m "Get Britain Building Fund", intended to un-stall shovel-ready sites, will give them public money. And the new mortgage indemnity scheme will underwrite the house-buying borrowing that they rely on, at the taxpayer's risk. What is missing is the quid pro quo -- the crucial piece of the jigsaw that requires the development industry, in return, to perform.

In the past, a disproportionate amount of the money from previously announced pump-priming schemes has gone to the largest house-builders, without a clearly articulated "ask" of them in return. So, the danger is that this could again lead to the major developers repairing their balance sheets while the sector maintains its long-term record of under-performance. If this is allowed to happen, we will not see the 250,000 new homes each year we need.

The fallout from the credit crunch has left a damaged building sector at low levels of output with unhealthy balance sheets. The historical experience of past recessions contrasts with the current optimism about a strong supply-side response from the building sector. The past two British house-building recessions, starting in 1972 and 1990, both resulted in lost decades for housing output. The shock we are now seeing -- with the lowest levels of house-building since World War Two -- comes alongside long-term trends of failure from the building sector. We have seen a failure to increase output or respond adequately to growing demand; a trend towards industry consolidation within the sector over output growth; and a growing cyclicality and vulnerability to external shocks. There is little reason to think this behaviour is likely to change without reform. The danger is that we are now on course for another lost decade in British house-building.

If anything, today's government intervention makes that eventuality more likely. Government intervention has stopped any "creative destruction" in the building sector. Its effect has been to prevent the realisation of losses and release of cheaper land that is critical for facilitating new market entrants and delivering cheaper housing. Rather than leveraging up government investment, the current approach deleverages down the impact of government subsidy by allowing it to cushion financial weakness among existing larger players at the cost of under-performance. Larger firms benefit from being seen as "too big to fail", but smaller firms and possible new market entrants have become increasingly frozen out of access to credit and government support packages.

Planning reform and public land schemes should drive building sector innovation to increase output and encourage new entrants, as there is a real danger that existing UK house-builders will merely use building on public land with public money to displace activity from less viable market sites -- leading to no net increase in output.

The Housing Strategy sets out ways to get land and money to developers, but there are serious question marks as to whether house-builders are willing or able to deliver on their side of the bargain. Just as the government's attempts to increase bank lending have broadly failed -- with a banking sector more concerned about recapitalisation and risk management -- so the attempt to encourage the major UK house-builders to increase supply is currently likely to fail due to their overriding focus on restoring their damaged balance sheets and entering into a long period of risk aversion and stagnation. The government needs to come up with a programme of radical change within the building sector itself if it is to succeed in spurring growth through house-building. Like the UK banking sector, the UK building sector is a "broken transmission mechanism" in need of reform. IPPR will publish a paper next month analysing the sector's problems and suggesting ways to shake it up, such as tying public land release to stricter criteria for lower profit margins and faster build-out rates, as well as the government acting as a clearing house for the landbanks of failing developers. Meanwhile, it is not too late for the Chancellor in his autumn statement next week to show that government is serious about getting developers to develop; building the sorts of homes we need, where we need them, soon.

Andy Hull is Senior Research Fellow at IPPR

Getty
Show Hide image

Inside Big Ben: why the world’s most famous clock will soon lose its bong

Every now and then, even the most famous of clocks need a bit of care.

London is soon going to lose one of its most familiar sounds when the world-famous Big Ben falls silent for repairs. The “bonging” chimes that have marked the passing of time for Londoners since 1859 will fall silent for months beginning in 2017 as part of a three-year £29m conservation project.

Of course, “Big Ben” is the nickname of the Great Bell and the bell itself is not in bad shape – even though it does have a huge crack in it.

The bell weighs nearly 14 tonnes and it cracked in 1859 when it was first bonged with a hammer that was way too heavy.

The crack was never repaired. Instead the bell was rotated one eighth of a turn and a lighter (200kg) hammer was installed. The cracked bell has a characteristic sound which we have all grown to love.

Big Ben strikes. UK Parliament.

Instead, it is the Elizabeth Tower (1859) and the clock mechanism (1854), designed by Denison and Airy, that need attention.

Any building or machine needs regular maintenance – we paint our doors and windows when they need it and we repair or replace our cars quite routinely. It is convenient to choose a day when we’re out of the house to paint the doors, or when we don’t need the car to repair the brakes. But a clock just doesn’t stop – especially not a clock as iconic as the Great Clock at the Palace of Westminster.

Repairs to the tower are long overdue. There is corrosion damage to the cast iron roof and to the belfry structure which keeps the bells in place. There is water damage to the masonry and condensation problems will be addressed, too. There are plumbing and electrical works to be done for a lift to be installed in one of the ventilation shafts, toilet facilities and the fitting of low-energy lighting.

Marvel of engineering

The clock mechanism itself is remarkable. In its 162-year history it has only had one major breakdown. In 1976 the speed regulator for the chimes broke and the mechanism sped up to destruction. The resulting damage took months to repair.

The weights that drive the clock are, like the bells and hammers, unimaginably huge. The “drive train” that keeps the pendulum swinging and that turns the hands is driven by a weight of about 100kg. Two other weights that ring the bells are each over a tonne. If any of these weights falls out of control (as in the 1976 incident), they could do a lot of damage.

The pendulum suspension spring is especially critical because it holds up the huge pendulum bob which weighs 321kg. The swinging pendulum releases the “escapement” every two seconds which then turns the hands on the clock’s four faces. If you look very closely, you will see that the minute hand doesn’t move smoothly but it sits still most of the time, only moving on each tick by 1.5cm.

The pendulum swings back and forth 21,600 times a day. That’s nearly 8m times a year, bending the pendulum spring. Like any metal, it has the potential to suffer from fatigue. The pendulum needs to be lifted out of the clock so that the spring can be closely inspected.

The clock derives its remarkable accuracy in part from the temperature compensation which is built into the construction of the pendulum. This was yet another of John Harrison’s genius ideas (you probably know him from longitude fame). He came up with the solution of using metals of differing temperature expansion coefficient so that the pendulum doesn’t change in length as the temperature changes with the seasons.

In the Westminster clock, the pendulum shaft is made of concentric tubes of steel and zinc. A similar construction is described for the clock in Trinity College Cambridge and near perfect temperature compensation can be achieved. But zinc is a ductile metal and the tube deforms with time under the heavy load of the 321kg pendulum bob. This “creeping” will cause the temperature compensation to jam up and become less effective.

So stopping the clock will also be a good opportunity to dismantle the pendulum completely and to check that the zinc tube is sliding freely. This in itself is a few days' work.

What makes it tick

But the truly clever bit of this clock is the escapement. All clocks have one - it’s what makes the clock tick, quite literally. Denison developed his new gravity escapement especially for the Westminster clock. It decouples the driving force of the falling weight from the periodic force that maintains the motion of the pendulum. To this day, the best tower clocks in England use the gravity escapement leading to remarkable accuracy – better even than that of your quartz crystal wrist watch.

In Denison’s gravity escapement, the “tick” is the impact of the “legs” of the escapement colliding with hardened steel seats. Each collision causes microscopic damage which, accumulated over millions of collisions per year, causes wear and tear affecting the accuracy of the clock. It is impossible to inspect the escapement without stopping the clock. Part of the maintenance proposed during this stoppage is a thorough overhaul of the escapement and the other workings of the clock.

The Westminster clock is a remarkable icon for London and for England. For more than 150 years it has reminded us of each hour, tirelessly. That’s what I love about clocks – they seem to carry on without a fuss. But every now and then even the most famous of clocks need a bit of care. After this period of pampering, “Big Ben” ought to be set for another 100 or so years of trouble-free running.

The Conversation

Hugh Hunt is a Reader in Engineering Dynamics and Vibration at the University of Cambridge.

This article was originally published on The Conversation. Read the original article.