Hiding in plain sight

The Easter holiday rush is receding into distant memory. The only thing airport security personnel have to worry about is what happens when everyone starts arriving for the Olympics. That, and the helpful physicists who have worked out how to smuggle a gun through a metal detector.

It all started as a bit of harmless blue-sky thinking. In the late 1960s, a Russian physicist pointed out the fun you could have if you invented a material that bends light in the opposite direction to normal. You could use it as an invisibility cloak, he said: just as water diverts round a rock in a stream by going first to one side, then back to the other, light bent in two different directions as it passed an object would give a viewer the impression that the light had travelled in a straight line and that the object simply wasn’t there.

Oh, how everybody laughed. Then, in 2000, someone turned this ridiculous fantasy into reality. John Pendry of Imperial College London showed how to create “left-handed materials” that would bend microwave radiation the wrong way. The practicalities were a little cumbersome and it didn’t work with visible light. But still, it was surprising, impressive and fun, in a nerdy kind of way.

Over the past decade, the technology has matured. At first, left-handed materials were constructed from intricate arrays of copper rings and could only hide tiny objects from a microwave detector. Now, we have invisibility “carpets” made from cheap and widely available crystals of the mineral calcite. They are able to hide objects the size of your thumb – and they work in visible light.

That technology is not yet going to smuggle a gun through airport security, though. Even if the X-ray machine doesn’t make the outline obvious, the magnetic field from the steel triggers an alarm. But a paper recently published in the journal Science can get you round that obstacle.

As it turns out, you can cloak a metal’s magnetic field for less than £1,000. First, wrap your gun in a layer of superconducting tape. Magnetic fields cannot pass through a layer of superconductor, so the scanner wouldn’t see the gun’s field. The scanner would see the superconductor’s field, though. However, this can be countered by adding a layer of flexible magnetic strip, rather like that found on the back of a fridge magnet. The researchers showed that this combination of readily available materials does a reasonable job of cloaking a magnetic field.

Touching the void

OK, it’s still not quite a credible threat. The superconductor has to be kept at liquid-nitrogen temperatures and a cloud of nitrogen vapour coming out of your hand luggage might raise a few eyebrows. A simple thermal detector would certainly put paid to any gun-smuggling plans.

But the physicists aren’t beaten yet. While some have been content to bend light as it travels through space, Martin McCall of Imperial College London has played around with bending light as it travels though time.

The technique involves slowing down and speeding up light inside an optical fibre – something that physicists have learned to do with astonishing skill in the past few years. McCall now has a blueprint for a device that doesn’t just make things invisible; it makes it look like they never even happened. It only works on technologies with an optical fibre feed, such as a CCTV camera. Nevertheless, in principle, we now know how to create the illusion of a void in both space and time – a void that could plausibly be exploited to evade surveillance technologies. Of course, it’s ridiculous. But where these troublesome physicists are involved, nothing remains ridiculous for long.

Michael Brooks’s “Free Radicals: the Secret Anarchy of Science” is published by Profile Books (£12.99)

Michael Brooks holds a PhD in quantum physics. He writes a weekly science column for the New Statesman, and his most recent book is At the Edge of Uncertainty: 11 Discoveries Taking Science by Surprise.

This article first appeared in the 30 April 2012 issue of the New Statesman, The puppet master

Getty Images/ Staff
Show Hide image

The answer to the antibiotics crisis might be inside your nose

The medical weapons we have equipped ourselves with are losing their power. But scientists scent an answer. 

They say there’s a hero in everyone. It turns out that actually, it resides within only about ten percent of us. Staphylococcus lugdunensis may be the species of bacteria that we arguably don’t deserve, but it is the one that we need.

Recently, experts have cautioned that we may be on the cusp of a post-antibiotic era. In fact, less than a month ago, the US Centres for Disease Control and Prevention released a report on a woman who died from a "pan-resistant" disease – one that survived the use of all available antibiotics. Back in 1945, the discoverer of penicillin, Alexander Fleming, warned during his Nobel Prize acceptance speech against the misuse of antibiotics. More recently, Britain's Chief Medical Officer Professor Dame Sally Davies has referred to anti-microbial resistance as “the greatest future threat to our civilisation”.

However, hope has appeared in the form of "lugdunin", a compound secreted by a species of bacteria found in a rather unlikely location – the human nose.

Governments and health campaigners alike may be assisted by a discovery by researchers at the University of Tubingen in Germany. According to a study published in Nature, the researchers had been studying Staphylococcus aureus. This is the bacteria which is responsible for so-called "superbug": MRSA. A strain of MRSA bacteria is not particularly virulent, but crucially, it is not susceptible to common antibiotics. This means that MRSA spreads quickly from crowded locations where residents have weaker immune systems, such as hospitals, before becoming endemic in the wider local community. In the UK, MRSA is a factor in hundreds of deaths a year. 

The researchers in question were investigating why S. aureus is not present in the noses of some people. They discovered that another bacteria, S. lugdunensis, was especially effective at wiping out its opposition, even MRSA. The researchers named the compound created and released by the S. lugdunensis "lugdunin".

In the animal testing stage, the researchers observed that the presence of lugdunin was successful in radically reducing and sometimes purging the infection. The researchers subsequently collected nasal swabs from 187 hospital patients, and found S. aureus on roughly a third of the swabs, and S. lugdunensis on up to 10 per cent of them. In accordance with previous results, samples that contained both species saw an 80 per cent decrease of the S. aureus population, in comparison to those without lugdunin.

Most notably, the in vitro (laboratory) testing phase provided evidence that the new discovery is also useful in eliminating other kinds of superbugs, none of which seemed to develop resistance to the new compound. The authors of the study hypothesised that lugdunin had evolved  “for the purpose of bacterial elimination in the human organism, implying that it is optimised for efficacy and tolerance at its physiological site of action". How it works, though, is not fully understood. 

The discovery of lugdunin as a potential new treatment is a breakthrough on its own. But that is not the end of the story. It holds implications for “a new concept of finding antibiotics”, according to Andreas Peschel, one of the bacteriologists behind the discovery.

The development of antibiotics has drastically slowed in recent years. In the last 50 years, only two new classes of this category of medication have been released to the market. This is due to the fact almost all antibiotics in use are derived from soil bacteria. By contrast, the new findings record the first occurrence of a strain of bacteria that exists within human bodies. Some researchers now suggest that the more hostile the environment to bacterial growth, the more likely it may be for novel antibiotics to be found. This could open up a new list of potential areas in which antibiotic research may be carried out.

When it comes to beating MRSA, there is hope that lugdunin will be our next great weapon. Peschel and his fellow collaborators are in talks with various companies about developing a medical treatment that uses lugdunin.

Meanwhile, in September 2016, the United Nations committed itself to opposing the spread of antibiotic resistance. Of the many points to which the UN signatories have agreed, possibly the most significant is their commitment to “encourage innovative ways to develop new antibiotics”. 

The initiative has the scope to achieve a lot, or dissolve into box ticking exercise. The discovery of lugdunin may well be the spark that drives it forward. Nothing to sniff about that. 

Anjuli R. K. Shere is a 2016/17 Wellcome Scholar and science intern at the New Statesman