Architecture: What does Big Data mean for our cities?

Size, population and the number of petrol stations can yield fascinating insights into how our cities function best - but we must remember that any self-organising system is more than the sum of its parts.

In a blog post last year, the scientist Stephen Wolfram, creator of the Mathematica software and the “computational knowledge engine” Wolfram|Alpha, suggested that the next revolution would be in “personal analytics”. He demonstrated this idea by collating and charting his life using his vast archive of personal data, including every email he had sent since 1989. In this way, he could see which years were the most busy or what times of the day he sent the most emails. His desktop calendar also revealed data about the course of an average day, while his phone records showed who he was talking to and for how long.

Wolfram’s company has already released a similar app on Facebook, so that people can chart their personal data to see everything from which friends live the highest above sea level to how networks of contacts interweave. We are, Wolfram might suggest, the sum of our information trail. Our lives have become data sets to be probed, charted and, once collated, analysed for efficiencies and savings.

In the new age of “Big Data”, does the same go for our cities? Just as Wolfram has reduced his life to packets of data, many urban thinkers now believe that the city is no longer just a place but a living field of information to be harvested.

Big claims are being made for this notion. Le Corbusier once called for the rationalisation of the city, making it a machine for living; today, many think that data, in the words of Assaf Biderman, the associate director of MIT’s Senseable City Lab, will make our cities “more human”.

Urban living used to be an art. Now, it is a science, burdened with the heavy-sounding label of “quantitative urbanism”. It is preached with the moral fervour of a Victorian public health official and involves some of the biggest names in the software, consultancy and infrastructure industries: IBM, Cisco, Philips, McKinsey & Company and Booz Allen Hamilton, among others.

Yet away from the hard sell, does this quantitative approach to ourselves and our cities tell us anything? Is the accumulation of data the same as the development of knowledge?

In 2003, the British-born physicist Geoffrey West started to study the metabolism of cities and soon came up with some surprising results. West wanted to find out whether the zoological rules first devised in the 1930s by Max Kleiber – which showed how all forms of life, from a fly to an elephant, follow the same equation that combines size, energy use and life expectancy – might apply to something as large and chaotic as a city.

West and his team at the Santa Fe Institute gathered together a huge data set: measurements of scale for urban centres in the US of over 50,000 citizens; statistics on “gross metropolitan product”; crime figures; the amount of money made by petrol stations in all 50 states; patents, as well as tax returns. Then, they put it all together into one database. They also included figures from the National Bureau of Statistics of China and Eurostat and even measurements of road surfaces from across Germany, as well as the amount of copper used in overhead wiring.

Surprisingly, the results reduced the life of a city to a mathematical rule: a Kleiberesque “unified theory of urban living”. So, while we can view individual cities as having their own particular history and personality, underlying rules apply that mean they have a lot in common with each other.

Yet cities do not follow Kleiber’s law exactly – rather than slowing down as they get bigger, cities speed up: they become more productive, creative, efficient and sustainable. As West points out, if you tell him the size and population of a city, he can cal - culate its crime rate, the number of patents it produces a year, how many petrol stations it needs, how many HIV-positive people reside there. According to West, the essential characteristics of a city can be reduced to an equation. Size matters, it seems.

Other urban thinkers, meanwhile, are starting to use the mathematics of complexity in an attempt to rethink how cities work. In this method, our understanding of networks and their emergent properties allow us to see how cities might work like beehives, ant or termite hills, the flow of liquids or the neural patterns of the brain.

This new urbanism – which views the city as a combination of networks and information – does not, in the words of John Keats, unweave the rainbow but forces us to question some of our long-held assumptions: what we consider to be the ideal size for a city; how we can use the qualities of complexity to rethink how the city is organised. Often, these discussions are conducted in the esoteric language of calculus and network theory. However, this can only have an impact when it is once again translated back into the language of the city – a place made up of people.

However, it would be wrong to think that data is the story. Information is the message, not the medium, and we need to be careful that this full-throttle embrace of data does not wash away the many other ways of looking at the city.

Just as Wolfram’s personal analytics do not show us the full extent of his life story, quantitative urbanism does not give us a complete picture of the modern city with all its elements. As complexity theory tells us, one of the characteristics of a self-organ - ising system – such as a city or a beehive – is that it will always be more than the sum of its parts.

Only connect. Our cities are viewed by planners as data sets. Photograph: Getty Images.

This article first appeared in the 15 July 2013 issue of the New Statesman, The New Machiavelli

Davide Restivo at Wikimedia Commons
Show Hide image

Scientists have finally said it: alcohol causes cancer

Enough of "linked" and "attributable": a new paper concludes that alcohol directly causes seven types of cancer.

I don't blame you if you switch off completely at the words "causes cancer". If you pay attention to certain publications, everything from sunbeds, to fish, to not getting enough sun, can all cause cancer. But this time, it's worth listening.

The journal Addiction has published a paper that makes a simple, yet startling, claim: 

"Evidence can support the judgement that alcohol causes cancer of the oropharynx [part of the throat], larynx, oesophagus, liver, colon, rectum and [female] breast"

So what's especially significant about this? 

First, scientists, unlike journalists, are very wary of the word "causes". It's hard to ever prove that one action directly led to another, rather than that both happened to occur within the same scenario. And yet Jennie Connor, author of the paper and professor in the Preventive and Social Medicine department at the University of Otago, New Zealand, has taken the leap.

Second, alcohol not only causes cancer of one kind – the evidence supports the claim that it causes cancer at seven different sites in our bodies. There was weaker evidence that it may also cause skin, prostate and pancreatic cancer, while the link between mouth cancers and alcohol consumption was the strongest. 

What did we know about alcohol and cancer before?

Many, many studies have "linked" cancer to alcohol, or argued that some cases may be "attributable" to alcohol consumption. 

This paper loooks back over a decade's worth of research into alcohol and cancer, and Connor concludes that all this evidence, taken together, proves that alcohol "increases the incidence of [cancer] in the population".

However, as Connor notes in her paper, "alcohol’s causal role is perceived to be more complex than tobacco's", partly because we still don't know exactly how alcohol causes cancer at these sites. Yet she argues that the evidence alone is enough to prove the cause, even if we don't know exactly how the "biologial mechanisms" work. 

Does this mean that drinking = cancer, then?

No. A causal link doesn't mean one thing always leads to the other. Also, cancer in these seven sites was shown to have what's called a "dose-response" relationship, which means the more you drink, the more you increase your chances of cancer.

On the bright side, scientists have also found that if you stop drinking altogether, you can reduce your chances back down again.

Are moderate drinkers off the hook?

Nope. Rather devastatingly, Connor notes that moderate drinkers bear a "considerable" portion of the cancer risk, and that targeting only heavy drinkers with alcohol risk reduction campaigns would have "limited" impact. 

What does this mean for public health? 

This is the tricky bit. In the paper, Connor points out that, given what we know about lung cancer and tobacco, the general advice is simply not to smoke. Now, a strong link proven over years of research may suggest the same about drinking, an activity society views as a bit risky but generally harmless.

Yet in 2012, it's estimated that alcohol-attributable cancers killed half a million people, which made up 5.8 per cent of cancer deaths worldwide. As we better understand the links between the two, it's possible that this proportion may turn out to be a lot higher. 

As she was doing the research, Connor commented:

"We've grown up with thinking cancer is very mysterious, we don't know what causes it and it's frightening, so to think that something as ordinary as drinking is associated with cancer I think is quite difficult."

What do we do now?

Drink less. The one semi-silver lining in the study is that the quantity of alcohol you consume has a real bearing on your risk of developing these cancers. 

On a wider scale, it looks like we need to recalibrate society's perspective on drinking. Drug campaigners have long pointed out that alcohol, while legal, is one of the most toxic and harmful drugs available  an argument that this study will bolster.

In January, England's chief medical officer Sally Davies introduced some of the strictest guidelines on alcohol consumption in the world, and later shocked a parliamentary hearing by saying that drinking could cause breast cancer.

"I would like people to take their choice knowing the issues," she told the hearing, "And do as I do when I reach for my glass of wine and think... do I want to raise my risk of breast cancer?"

Now, it's beginning to look like she was ahead of the curve. 

Barbara Speed is a technology and digital culture writer at the New Statesman and a staff writer at CityMetric.