A market that won't go pop: why helium balloons could one day cost £100 each

Once the US - which supplies 80 per cent of the world's helium - stops selling off its store at an artificially low price, we have a problem.

Here’s a new word for you: phytonugget. It’s a tiny bit of gold, the dimensions of which are roughly half the thickness of a human hair. It doesn’t sound particularly interesting until you hear that it grows on trees. Not all trees, mind. Only trees that are sitting above a deposit of gold ore. Trees mine their soil for water and nutrients; the gold comes up with the good stuff and gets deposited in the tree’s leaves.

Earth science engineers in Kensington, Australia made the discovery. So no more expensive mining and prospecting: you can now do an X-ray analysis of a few twigs and leaves to work out where the gold is buried.

If only we could do the same with lithium. One of the few upsides of Chinese involvement in the next generation of nuclear reactors to be built in the UK is that we may not face the woes now troubling the US.

The US Government Accountability Office (GAO) has issued a warning that an imminent shortage of lithium for its 65 pressurised water reactors “places their ability to continue to provide electricity at some risk”. Every year, the US gets through about 300kg of the isotope known as lithium-7, an essential ingredient to prevent corrosion of water pipes in reactors. Because lithium-7 is a byproduct of processes to produce nuclear warheads, and the US is letting its stockpiles shrink, the US no longer manufactures any. That leaves China and Russia as the only suppliers.

Given the links to weapons programmes, the amounts available in these two countries are a closely guarded secret. With China embarking on a vast nuclear construction programme, the US is facing the possibility that there won’t be enough lithium-7 to go round. The GAO recommended that the US think about restarting domestic production of lithium and look into the possibility of reducing its reactors’ reliance on the element. Both options will take years and the US may not have that long.

There is precedent for this type of problem. When the US department of homeland security started to build a stockpile of bomb detectors for use at airports, it quickly used up reserves of the helium-3 isotope that the detectors needed. Helium-3 is another byproduct of warhead production and the US had stopped making any in 1988.

The biggest losers were the scientists who use the isotope to perform research at below -272° Celsius – helium-3 being the only way to get temperatures so low. And with their stores depleted, many researchers had no choice but to abandon their experiments.

It’s not clear which department is going to be blamed for the impending shortage of the gas that gives our party balloons a lift, though. Supplies of the lighter-than-air isotope helium-4 are falling rapidly. The US supplies 80 per cent of world demand but is trying to get rid of its reserves by 2015 and so it sells helium at an artificially low price.

That means helium consumers such as hospitals – it is used to cool the magnets in MRI machines – and party suppliers are buoyant for now. But once the helium is all gone we’ll have to pull it from the air. That will be so expensive we’ll be filling party balloons at £100 a pop; there will be no squeaky-voiced shenanigans at that price.

We desperately need to find more natural deposits of helium. It does occur, like gold ore, in underground rocks but locating it has proved even harder than finding extractable gold ore. If you spot any trees floating slightly above ground level, let the GAO know.

In the future, helium balloons could cost £100 a pop. Image: Getty

Michael Brooks holds a PhD in quantum physics. He writes a weekly science column for the New Statesman, and his most recent book is At the Edge of Uncertainty: 11 Discoveries Taking Science by Surprise.

This article first appeared in the 30 October 2013 issue of the New Statesman, Should you bother to vote?

Getty Images/ Staff
Show Hide image

The answer to the antibiotics crisis might be inside your nose

The medical weapons we have equipped ourselves with are losing their power. But scientists scent an answer. 

They say there’s a hero in everyone. It turns out that actually, it resides within only about ten percent of us. Staphylococcus lugdunensis may be the species of bacteria that we arguably don’t deserve, but it is the one that we need.

Recently, experts have cautioned that we may be on the cusp of a post-antibiotic era. In fact, less than a month ago, the US Centres for Disease Control and Prevention released a report on a woman who died from a "pan-resistant" disease – one that survived the use of all available antibiotics. Back in 1945, the discoverer of penicillin, Alexander Fleming, warned during his Nobel Prize acceptance speech against the misuse of antibiotics. More recently, Britain's Chief Medical Officer Professor Dame Sally Davies has referred to anti-microbial resistance as “the greatest future threat to our civilisation”.

However, hope has appeared in the form of "lugdunin", a compound secreted by a species of bacteria found in a rather unlikely location – the human nose.

Governments and health campaigners alike may be assisted by a discovery by researchers at the University of Tubingen in Germany. According to a study published in Nature, the researchers had been studying Staphylococcus aureus. This is the bacteria which is responsible for so-called "superbug": MRSA. A strain of MRSA bacteria is not particularly virulent, but crucially, it is not susceptible to common antibiotics. This means that MRSA spreads quickly from crowded locations where residents have weaker immune systems, such as hospitals, before becoming endemic in the wider local community. In the UK, MRSA is a factor in hundreds of deaths a year. 

The researchers in question were investigating why S. aureus is not present in the noses of some people. They discovered that another bacteria, S. lugdunensis, was especially effective at wiping out its opposition, even MRSA. The researchers named the compound created and released by the S. lugdunensis "lugdunin".

In the animal testing stage, the researchers observed that the presence of lugdunin was successful in radically reducing and sometimes purging the infection. The researchers subsequently collected nasal swabs from 187 hospital patients, and found S. aureus on roughly a third of the swabs, and S. lugdunensis on up to 10 per cent of them. In accordance with previous results, samples that contained both species saw an 80 per cent decrease of the S. aureus population, in comparison to those without lugdunin.

Most notably, the in vitro (laboratory) testing phase provided evidence that the new discovery is also useful in eliminating other kinds of superbugs, none of which seemed to develop resistance to the new compound. The authors of the study hypothesised that lugdunin had evolved  “for the purpose of bacterial elimination in the human organism, implying that it is optimised for efficacy and tolerance at its physiological site of action". How it works, though, is not fully understood. 

The discovery of lugdunin as a potential new treatment is a breakthrough on its own. But that is not the end of the story. It holds implications for “a new concept of finding antibiotics”, according to Andreas Peschel, one of the bacteriologists behind the discovery.

The development of antibiotics has drastically slowed in recent years. In the last 50 years, only two new classes of this category of medication have been released to the market. This is due to the fact almost all antibiotics in use are derived from soil bacteria. By contrast, the new findings record the first occurrence of a strain of bacteria that exists within human bodies. Some researchers now suggest that the more hostile the environment to bacterial growth, the more likely it may be for novel antibiotics to be found. This could open up a new list of potential areas in which antibiotic research may be carried out.

When it comes to beating MRSA, there is hope that lugdunin will be our next great weapon. Peschel and his fellow collaborators are in talks with various companies about developing a medical treatment that uses lugdunin.

Meanwhile, in September 2016, the United Nations committed itself to opposing the spread of antibiotic resistance. Of the many points to which the UN signatories have agreed, possibly the most significant is their commitment to “encourage innovative ways to develop new antibiotics”. 

The initiative has the scope to achieve a lot, or dissolve into box ticking exercise. The discovery of lugdunin may well be the spark that drives it forward. Nothing to sniff about that. 

Anjuli R. K. Shere is a 2016/17 Wellcome Scholar and science intern at the New Statesman